По программе ПОЛИМОДЕ в Бермудском треугольнике

Станев Эмил Василев

Проблемы окружающей среды — наиболее остро стоящие научные проблемы нашей современности. К ним относятся и некоторые аспекты океанографической науки. С целью изучения и освоения Мирового океана сейчас непрерывно проводятся сложные специализированные океанографические эксперименты, значительная часть которых носит международный характер. В 1978 году автор этой книги принял участие в крупнейшем океанографическом эксперименте ПОЛИМОДЕ, главной задачей которого было изучение «погоды в океане», которая, как оказалось, имеет большое значение для формирования погоды вообще.

Автор знакомит читателя с океанографическими проблемами, исследование которых легло в основу программы ПОЛИМОДЕ, ходом выполнения задач во время 27–го рейса научно — исследовательского судна «Академик Курчатов».

На страницах книги рассказывается о путешествии из Европы к берегам Америки и обратно. Читателю любопытно будет узнать о малознакомых Канарских и Бермудских островах, о Саргассовом море — море без берегов, об ураганах, зарождающихся в этой области океана, а также о таинственном Бермудском треугольнике, в акватории которого проходило большинство экспериментов по программе ПОЛИМОДЕ.

ПРЕДИСЛОВИЕ

1977–1978 годы войдут в историю океанографии как годы советско — американского сотрудничества. Возможно, они будут известны как годы проведения крупнейшего океанографического эксперимента, а может быть, их назовут годами эпохальных открытий. Я говорю возможно, ибо для обработки и объяснения данных, непрерывно поступавших в течение двух лет, при нынешних научно — технических возможностях понадобится приблизительно столько же времени. После окончания работ по программе ПОЛИМОДЕ прошло всего несколько месяцев, и сейчас трудно оценить его значение. Одно несомненно: он займет особое место среди наиболее значительных океанографических исследований, таких как эксперимент, осуществленный на британском корвете «Челлинджер» в 1872–1876 гг.; эксперименты по программе Международного геофизического года 1957–1958 и 1959–1962 гг.; «Полигон—70»; МОДЕ (Срединно — океанический динамический эксперимент) — 1973 г.; ПИГАП (Программа исследования глобальных атмосферных процессов) — 1974 и 1979 гг. и др. Интересно отметить, что обработка данных, полученных первой крупной экспедицией Челлинджера, продолжалась около двадцати лет, причем их объем был в тысячи раз меньше, нежели объем данных, по лученных советскими и американскими учеными во время работы по программе ПОЛИМОДЕ.

И все‑таки, значение таких научных атак, как эксперимент ПОЛИМОДЕ, может быть оценено уже сегодня. Это объясняется актуальностью его задач и серьезным научным планированием. Разумеется, было бы неразумно ожидать, что после обработки полученных данных все вопросы, стоящие перед океанографией, будут решены, но можно смело утверждать, что в ближайшие годы развитие этой науки будет осуществляться на качественно новой основе. Множество существующих теорий получит практическое подтверждение, другие будут пересмотрены или вообще отвергнуты. И самое важное — появятся новые объяснения интереснейших явлений, протекающих в труднодоступных глубинах океана.

Мировой океан — единое целое, и его изучение — долг всего человечества. Показателен тот факт, что Чехословакия, которая, к примеру, не является морской державой, тоже проводит морские исследования. Ныне все страны — большие и малые — должны внести свой посильный вклад в изучение океана, дабы получить законное право участвовать в распределении его неисчерпаемых богатств. Именно это и определяет расширение сотрудничества ученых разных стран в деле мирного исследования и использования Мирового океана.

Наша страна участвует в решении проблемы исследования моря вместе с учеными СССР, ГДР, Польши и Румынии, которые осуществляют совместные разработки в соответствии с программами, специально утвержденными по линии СЭВ. Для таких маленьких стран, как наша, это имеет не только сугубо практическое, но и большое политическое значение. Интеграция болгарской науки с советской способствует ее быстрому развитию до мирового уровня. Здесь необходимо отметить, что осуществление современных океанологических экспериментов порой не под силу даже многим хорошо развитым в экономическом и научном отношении странам. В этом плане наши ученые при использовании материальной базы советских научных институтов и научного флота имеют возможность плодотворно трудиться на переднем крае океанографической науки.

Для Болгарии, которая в настоящее время не располагает современным научно — исследовательским флотом, подобные контакты чрезвычайно полезны. На научных судах СССР нашим специалистам предоставляются отличные условия для работы. Они получают возможность работать с самыми современными измерительными приборами, которыми наша страна в данный момент не располагает, а также с экспериментальным материалом, который невозможно получить собственными силами. Дальнейшая обработка этого материала ведется с помощью наших ученых и нашей электронно — вычислительной техники, что служит еще одним доказательством возросших научных возможностей Болгарии, высоко оцениваемых советскими и другими зарубежными учеными.

Климат и погода в океане

Реки в океане

Для многих выражение «реки в океане» может показаться странным, даже абсурдным, ибо в океане нет речных русл в обычном понимании этого слова, нет и четких границ, которые бы направляли речной поток. И все‑таки природа сумела «канализировать» перенос водных масс в океане и без четких границ, что делает океанские течения еще более внушительными. «Реки в океане» с незапамятных времен протекают в одних и тех же местах, их расход лишь слегка меняется со временем. Они несут тепло холодным берегам и охлаждают теплые, представляя собой самый грандиозный процесс, протекающий в жидкой оболочке Земли. Так, например, течение Гольфстрим несет воды в сотни раз больше, нежели самая полноводная река Амазонка в нижнем течении, а Антарктическое циркумполярное течение — в десять раз больше, чем Гольфстрим.

Рассмотрим подробнее эти глобальные переносы, определяющие облик океанской циркуляции, или, иными словами, проследим путь «рек в океане». Основные и, возможно, наиболее характерные особенности распределения течений — это наличие субтропических циркуляционных колец, система течений в экваториальной области океана и течение в Южном полушарии, опоясывающее Землю. Каждая система течений разграничивается ярко выраженными океанскими фронтами, представляющими собой зоны, где температура и соленость очень быстро меняются в поперечном направлении.

Самым внушительным океанским течением является Антарктическое циркумполярное течение, или, как его еще называют, течение Западных ветров. Опоясывая земной шар и пересекая три океана, оно достигает в ширину 2 500 км и проникает на глубину 3000–5000 метров. За одну секунду течение переносит более 200 млн. кубических метров воды со скоростью 25–30 см в секунду. Исследования показали, что его отклонение от параллелей обусловлено взаимодействием с рельефом дна, причем при уменьшении глубины океана течение отклоняется влево, а при повышении — вправо.

Иными характерными представителями группы течений, направленными вдоль параллелей, являются экваториальные, или пассатные течения. Они известны еще со времен Колумба, который, наблюдая за движением своего судна, пришел к заключению, хотя и довольно приблизительному, что в тропических зонах Атлантического океана вода перемещается на запад. Пассатными они называются потому, что вызываются господствующими здесь пассатами. Эти ветры дуют по обе стороны экватора круглый год, способствуя переносу на запад огромных масс воды, образующих Северное и Южное Пассатные течения.

Ближе к экватору пассатные ветры ослабевают, а в области экватора вообще исчезают. Здесь расположена так называемая штилевая зона. В результате неравномерности ветрового поля в ней образуется Межпассатное противотечение, направление которого — восточное, т. е. обратное движению пассатных течений. Амплитуда колебания его скорости довольно велика, что объясняется годовыми колебаниями скорости ветра.

Погода и климат

Все мы привыкли к ежедневным сводкам погоды. И хотя многие еще относятся к прогнозу погоды с известны! долей предубеждения, тем не менее, все знают, что над территорией нашей страны периодически проходят огромные циклоны и антициклоны, теплые или холодные воздушные массы. Они почти всегда перемещаются с запада на восток, что совпадает с направлением главного воздушного потока в средних географических широтах, у которого есть свой аналог и в океанах. Это Северо — Атлантическое и Северо — Тихоокеанское течения. Несут ли эти два течения циклоны и антициклоны? Проводя аналогию между циркуляцией атмосферы и океана, можно предположить, что ответ будет положительным. Однако каждое предположение нуждается в доказательстве.

Обратимся же к данным экспериментов и проследим, можно ли на основании этих данных утверждать о существовании циклонов и антициклонов в океанах. Но прежде рассмотрим вопрос о циклонах и антициклонах в атмосфере. Что позволяет ученым — метеорологам судить об их наличии в атмосфере и как они следят за процессом их образования и развития?

Как известно, суша, особенно в густонаселенных районах земли, покрыта плотной сетью метеорологических станций. На каждой из них проводятся измерения атмосферного давления, температуры, скорости ветра, количества осадков и др. Если данные о значениях геопотенциала

[1]

в определенный момент времени, полученные многими метеорологическими станциями, нанести на карту и соединить точки с одинаковым геопотенциалом, то получим распределение геопотенциала в данный момент. При сравнении двух подобных карт, но относящихся к разным отрезкам времени, можно сделать вывод, что воздушные массы, перемещаясь в пространстве, трансформируются. То же самое про — исходит и с полями температуры, скорости ветра и т. д.

Изменчив ли океан?

А сейчас снова вернемся к океану и проследим, как накапливались экспериментальные данные. Вначале сведения об океанских течениях черпали преимущественно из бортовых журналов, в которых обычно отмечали отклонения судна от намеченного курса. В зависимости от отклонения определялась скорость, и то довольно неточно, лишь поверхностного слоя морских вод. В дальнейшем с развитием океанографии стало возможным планомерное проведение морских экспедиций с целью получения экспериментальных данных. Но мы не станем рассматривать рабочие инструменты наших коллег в прошлом, а остановимся лишь на том, когда и как измеряли в океане.

Обычно исследовательское судно имеет точно заданный курс, в определенных точках которого и проводятся различного рода измерения. Разумеется, невозможно, чтобы один и тот Же корабль осуществлял синхронные измерения в двух точках пространства. Именно з®о и определяло дальнейший ход обработки океанографических данных. В силу того, что они были слишком нерегулярны, а их плотность в пространстве очень невелика, поступали следующим образом. Океан делился на квадраты, и все данные, полученные разными экспедициями в разное время в этих квадратах, суммировались и усреднялись. Таким образом, вследствие усреднения данных «кратковременные» элементы океанической динамики выпадали из поля зрения ученых.

Подобно усреднению поля геопотенциала, о котором мы уже говорили, усреднение океанографических данных позволяло ученым прошлого понять только общую структуру океанической динамики, или, иными словами, они изучали «климат океана». Однако такой способ получения и обработки данных не давал им возможность узнать те особенности, которые в каждый рассматриваемый момент определяют «погоду океана».

И тем не менее, сто пятьдесят лет назад были высказаны некоторые соображения о том, что океан изменчив, что течения, температура, соленость и пр. меняются как в пространстве, гак и во времени. К такому выводу пришел английский исследователь Джеймс Реннел. За семнадцать галсов, которые он проделал между Галифаксом и Бермудскими островами, Реннел установил, что местоположение и ширина Гольфстрима меняются со временем и что эти изменения нельзя отнести только к разряду сезонных. По его словам, отсутствие синхронных наблюдений является «непоправимым дефектом» океанографического эксперимента.

Новые эксперименты — новые идеи

В мировой науке известно немало случаев, когда абсурдная на первый взгляд идея вскоре перестает казаться нелепой и получает всеобщее признание. Но чтобы утвердить или отвергнуть эту идею, необходимы эксперименты. К сожалению, на деле теория и практика часто расходятся.

Пытаясь охарактеризовать начальный этап развития океанографических исследований, норвежский ученый-океанограф Г. Сведруп сказал, что много людей проводили измерения в океане, но лишь немногие из них размышляли над полученными результатами. И наоборот, в сороковых — пятидесятых годах советский океанограф В. Б. Штокман отметил, что «ныне слишком мно — го ученых занимались теоретическими исчислениями и слишком мало проводили целенаправленные измерения». Именно этот анахронизм явился причиной того, что в последнее время с новой силой заговорили об изменчивости океана. Но прежде необходимо было преодолеть кризис в области эксперимента, который наблюдался вплоть до семидесятых годов нашего века. Сегодня можно утверждать, что идея Реннела о проведении синхронных измерений уже осуществлена, а его скептическое замечание относительно бесплодности изучения изменяющихся во времени океанских движений уже давно опровергнуто. Основным направлением океанографических исследований как в теоретическом, так и в практическом плане, стало изучение именно изменчивости океана, ибо только она поможет раскрыть тайны механизмов формирования движений в океане.

Реализация идеи долговременных экспериментов в области исследования изменчивости крупных океанских процессов началась с работ В. Б. Штокмана. В 1935 году руководимая им экспедиция в течение трех недель на двух заякоренных судах проводила измерения флюктуации течений в Каспийском море. Результаты измерений показали, что изменения скоростей течений не всегда связаны с изменчивостью в атмосфере, как считалось до тех пор. Даже в безветренный период динамика течений в районе исследований отличалась большим разнообразием. Это позволило предположить, что изменение скоростей, а также иных гидрофизических характеристик подчинено каким‑то неизвестным пока механизмам, скорее всего связанным с самими течениями.

В 1956 году эксперимент, подобный Каспийскому, был проведен и в Черном море уже представителями нового поколения ученых, которые в настоящее время стоят в авангарде советской океанографической науки. Эксперименты носили полигонный характер. Это означает, что для проведения измерений выбиралась определенная морская акватория (полигон), где в течение продолжительного времени на заякоренных судах или буйковых станциях проводятся гидрофизические исследования.

Первым полигонным экспериментом, включающим все главные компоненты современных экспериментов, следует считать эксперимент 1967 года в Аравийском море. Но прежде нам хотелось бщ рассказать о некоторых интересных особенностях динамики Индийского океана, которые в той или иной степени характерны и для остальных океанов.

Вихри в океане и атмосфере

Большинство людей считает, что вихрь — это круговое движение. Обычно это понятие связывается с явлениями, наблюдаемыми в водных потоках, ручьях, а также с воздушными вихрями. Нам трудно себе представить вихревое образование, чьи размеры по горизонтали исчисляются несколькими сотнями километров, а в высоту достигают несколько километров. Таковы обычно масштабы вихрей в океане, а в атмосфере они в десятки раз больше. Характерное время

[3]

океанических вихрей несколько месяцев, а атмосферных — всего несколько дней. Но несмотря на эти отличия, и океан и атмосфера _ генерируют вихревые образования — циклоны и антициклоны, которые, перемещаясь в пространстве, переносят водные и воздушные массы на огромные расстояния.

Как уже отмечалось, после усреднения за продолжительный отрезок времени элементы атмосферной циркуляции, связанные с вихрями в атмосфере, исчезают. Означает ли это, что влияние вихрей на глобальные процессы в атмосфере несущественно? Прежде чем ответить на этот вопрос, сделаем небольшое отступление в области термодинамики. Все знают, что молекулы находятся в непрерывном движении и постоянно взаимодействуют друг с другом. Внешним выражением движения молекул в твердых телах, жидкостях и газах является температура. Что же произойдет, если мы возьмем, например, металлический прут и нагреем его с одного конца? Молекулы в этом конце начнут двигаться быстрее и станут чаще сталкиваться друг с другом. Более быстрые молекулы, ударяясь о более «ленивые», отдадут им часть своей энергии, в результате чего постепенно движение всех молекул станет более интенсивным, т. е. повысится температура и в том конце, который не нагревался.

Когда мы приготовляем себе пищу на электроплитке, конечно, никто из нас даже не думает о том, какую бесценную услугу оказывают нам молекулы, переносчики тепла. Мы их не видим, да и кто станет задумываться над этим, когда всех интересует лишь конечный результат нагревания. Однако это невидимое движение волнует ученых.

А теперь снова вернемся к атмосфере. Выражаясь образно, циклоны и антициклоны — это гигантские молекулы диаметром в тысячу километров, которые играют в общей циркуляции атмосферы совершенно определенную роль. Их задача — извлекать энергию из тех областей, где она наиболее сконцентрирована (например, в экваториальной и тропической областях), и переносить ее в места, где ее немного (например, на север). Эти «гигантские молекулы» привлекли пристальное внимание ученых тогда, когда встал вопрос о механизмах движений в атмосфере, а точнее, о структуре движений. В этом смысле циклоны и антициклоны, хотя они и недолговечны, подробно «рассказывают» о сущности атмосферных процессов, оставляя и свой след в состоянии атмосферы.