Как там у вас, на Бета-Лире?

Фиалков Юрий Яковлевич

Книга о проблемах космохимии, о современном уровне знаний в этой науке и ее перспективах.

ГЛАВА I

Из которой читатель узнает, что железа на нашей планете много, а золота мало — обстоятельство хотя и общеизвестное, но тем не менее не очень понятное; уяснит причины этого неравноправия; получит ответ на ряд вопросов, касающихся распространенности химических элементов на земле и в космосе, а также пищу для размышлений.

Промах капитана Кроллициаса

— Капитан Кроллициас, вы обвиняетесь в том, что, приближаясь к Земле, пересекли кордон 3-22, не испросив на это разрешения таможенно-карантинного контроля. Вы обвиняетесь в том, что ваш космолет «Черная овечка» шел без опознавательных огней и без радиосигнализатора. Вам предъявляется обвинение также в том, что на предложение диспетчера перейти на лунную орбиту вы продолжали движение и были остановлены лишь патрульными кораблями. На эту акцию службе контроля пришлось затратить ракетного топлива на тридцать пять тысяч долларов. Вы не получите разрешения перейти на посадочную орбиту и будете вместе со своим экипажем болтаться здесь до тех пор, пока не объясните ваши действия и не погасите вашу задолженность таможенно-карантинному контролю.

— Сэр, клянусь, я не имел дурных намерений! Просто в самый ответственный момент в моем экипаже возникли… э-э… разногласия, и я вынужден был… э-э… наводить порядок. Мало того, что я обломал об этих болванов последний навигатор, — я ввел в непреднамеренный расход таможенный контроль. Тридцать пять тысяч долларов я внесу в штрафную службу не позже чем через три часа после приземления. И еще пожертвую столько же… нет, в два раза больше в фонд памяти космомиссионерам. Вот и все. Полагаю, вы удовлетворены моим разъяснением, сэр?

— Все? Вы по-ла-гаете, что это все? А по-моему, капитан Кроллициас, это даже не начало. Я не намерен покинуть вашу «Овечку» (бог мой, какие только уродливые названия не напридумывают эти недоучки из провинциальных космодромов!) до тех пор, пока контролю не станет ясным все. Ясным! Все! Начнем с драки. Не можете ли вы указать причину конфликта между членами возглавляемого вами экипажа?

— Сэр, я знаю об этом не больше вашего. Помню только, что я не мог докричаться никого из них и когда отправился на розыски, то обнаружил, что эти два оболтуса в кают-компании мордуют друг друга.

— Мистер Франциск Гиббер и мистер Михаэлис Троттер, благоволите сообщить контролю причину вашей ссоры, которая ведь привела к неслыханному нарушению правил движения в околоземном пространстве.

3>>87

Знак «>>», как вы помните, означает «много больше». Нет, здесь ничего не перепутано, и «птички» направлены острием в нужную сторону. И 3 действительно много больше, чем 87…

…Прошлым летом в Приэльбрусье я услышал песню, которая имеет непосредственное отношение к теме этой главы. Группа туристов, оглашая криками окрестности, поднималась канаткой на Чегет. На верхней станции, пересчитав друг друга, туристы ухватились за гитары и над вечными снегами, многократно усиленное горным эхом, грянуло:

(Далее шли явно не относящиеся к делу строки, выражающие сожаление по поводу господней рассеянности и мечты о том, как, дескать, было бы на земле хорошо, если бы творец поступил наоборот.) По-видимому, следует начать с поверки поэзии алгеброй. То, что железа «много», а золота «мало», это, в общем, известно и без туристско-поэтического обобщения. А для серьезного разговора о распространенности химических элементов эти лирические определения, конечно, недостаточны. Следует обратиться к таблице распространенности химических элементов в земной коре. Но тут снова придется сделать отступление и пояснить несколько необычный термин «земная кора».

Можно сразу начать с обычно приводимого сравнения с апельсином, где апельсиновая кожура призвана моделировать земную кору. Кем-то верно замечено: каждое сравнение хромает. Очень точно сказано. Прежде всего наше сравнение неверно передает масштаб. Апельсиновая кожура по радиусу составляет не менее 10 % всего плода. Земной же корой считают толщу пород в 30 с небольшим километров, а это едва пятитысячная часть земного радиуса. Не «проходит» сравнение и по массе. Земная кора — это всего 0,8 % массы земного шара, меньше одного процента.

Много ли на земле эрбия?

За примерами ходить недалеко. Ртуть, надеюсь, никак нельзя отнести к малознакомым или очень уж редким элементам? Однако ее в земной коре в 100 (сто!) раз меньше, чем экзотического эрбия. Но может быть, эрбий по каким-то причинам обойденный элемент? Может быть, химики почему-либо гнушаются эрбием и именно этим объясняется непопулярность этого металла?

Посмотрим… Кто из вас держал в руках элемент иттрий? Никто? А слыхал кто об этом металле? Да, немногие… А ведь иттрия в земной коре целых 0,001 %! Не торопитесь говорить, что немного. Потому что «обычного» и очень хорошо известного брома в земной коре вдесятеро меньше, сурьмы же меньше в 100 раз, а висмута (того самого, чьи окислы составляют основу пудры) меньше, чем иттрия, в 1000 раз.

И уж совсем выразительный пример — элемент гафний. О нем химики узнали, можно сказать, совсем недавно, потому что он был открыт в 1923 году. Естественно было бы предполагать, что гафний отыскали позже остальных химических элементов потому, что его в земной коре мало. Конечно, с одной стороны, 4∙10

–5

число и впрямь небольшое, но ведь и йод не назовешь редким элементом! Йод помянут здесь не случайно. Об этом элементе уместно вспомнить, потому что его в земной коре втрое меньше, чем гафния. А известен йод химикам без малого 200 лет. Да и вряд ли стали бы в аптеках продавать за копейки йодную настойку, если бы йод был таким уж редким элементом. Но, может быть, гафний тоже стоит недорого? Как бы не так! Покупка десяти граммов гафния подрывает месячный бюджет даже солидной лаборатории.

Вот и выходит, что… ничего не понятно. А вместо ответа на вопросы выплыла очередная проблема: какой элемент следует считать редким?

Надо заметить, что распространенность элемента в земной коре и его доступность не всегда идут рука об руку. Тут можно вспомнить одесского коммерсанта смутного 1919 года, который невиданно дешево продавал вагон яблочного повидла и вагон секундных стрелок. Совершив сделку, он охотно пояснял довольным покупателям, что повидло и стрелки… как бы вам сказать… некоторым образом перемешаны друг с другом.

Чем больше, тем меньше

Хочу предложить читателям вместе со мной заняться поисками закономерностей, определяющих распространенность элементов в земной коре. Не может быть, чтобы мы в конце концов не выяснили, почему же на Земле кремния много, а золота мало. Случайно ли это или закономерно? Итак, ищем закон.

От чего отталкиваться, когда речь идет о химических элементах, известно: от периодической системы Менделеева. Вот и вывесим ее на стену так, чтобы она все время была перед глазами.

Начнем с первой группы менделеевской таблицы. Итак, щелочные металлы. Заглядывая в таблицу распространенности химических элементов, выпишем против названия каждого из щелочных металлов величины их содержания в земной коре (проценты, конечно, атомные).

Первого из щелочных металлов, лития, в земной коре маловато — 0,02 %. Да, по сравнению со следующими щелочными металлами, элементами-гигантами натрием (1,82 %) и калием (1,05 %), литий совсем бедный родственник. Впрочем, в семье щелочных металлов не один литий — голытьба: рубидия в земной коре еще меньше, чем лития (0,007 %), а цезия и вовсе самая малость (9∙10

5

%). Что же касается последнего из щелочных металлов, франция, то о его распространенности, которую и термином-то этим совестно назвать, уже говорилось. Закономерности как будто бы никакой нет. Сначала мало, затем много, а потом снова мало. Напоминает эрудицию школьника или студента до, во время и после экзамена. Позвольте, а если отбросить литий, то… То начинает проглядываться довольно определенная закономерность: содержание щелочного металла в земной коре убывает по мере повышения порядкового номера в периодической системе, или, что одно и то же, атомной массы.

Эту пока что еще довольно смутную догадку о связи распространенности элемента с его порядковым номером следует тут же проверить. Обратимся к соседней группе менделеевской системы. Металлы этой группы «сверху вниз» идут в таком порядке: магний, кальций, стронций, барий, радий. Выпишем в том же порядке колонку величин распространенности: 1,72 — 1,41 — 0,01 — 0,006 — 2∙10

ГЛАВА II

В которой читатель познакомится с весьма интересной кривой, помогающей, в частности, предсказывать завтрашнюю погоду и объясняющей причину радиоактивности; узнает, что все в этом мире относительно, даже понятия «устойчивый» и «неустойчивый»; увидит, что из воздуха можно строить не только замки; научится определять время по часам с заводом на миллиард-другой лет; совершит путешествие на своеобразные острова.

Инспектор Варнике возвращается к Баху

Ну конечно, стоит взять в руки виолончель, как телефон считает своим долгом выступить в роли аккомпаниатора! — Инспектор Варнике недовольно морщится и пытается сонатой Баха для виолончели соло заглушить телефонный звонок.

Но куда старику Иоганну Себастьяну состязаться с пронзительным изделием фирмы Руммер! Впрочем, Варнике не спешит. Он открывает стоящий на отдельном столике сундучок, со вкусом перебирает коллекцию трубок, наконец останавливается на трубке, подаренной герцогом Мальборо (да, да, именно после ТОГО дела!), медленно раскуривает. Бессознательно оттягивая неприятный разговор — а разве станут беспокоить инспектора полиции по приятному делу? — Варнике тешит себя мыслью: а вдруг это звонит старина Пуаро, чтобы сообщить, что он решил скоротать конец недели со своим давнишним другом, или, быть может, живчику Мегрэ не терпится сообщить, что он выслал сюда, в Гамбург, бочонок вермута. И инспектор снимает трубку.

— Слава богу, Варнике! — шумно выдыхает в трубку полицей-комиссар Шуббарт (нет, чудес на свете не бывает…). — А я уж решил, что вы изменили своим привычкам и, вместо того чтобы по средам играть Баха, засели у Глобке и смакуете свежую партию кальвадоса.

— У Глобке я бываю по пятницам, — сухо уточняет Варнике, — и пью в этом заведении не кальвадос, а перно.

— Простите, инспектор, — почти подхалимски поет комиссар, — я…

И в мае бывают морозы, или мы — не Лапласы!

В самом деле, отчего так разнятся химические элементы по своему содержанию? И не предположить ли, что поначалу элементов было поровну, но тяжелые успели уже «скончаться»?

«Смерть» элемента может наступать только в одном случае: при его распаде. Распад же атомного ядра, — это радиоактивность. Не она ли причина того, что последние элементы периодической системы находятся в земной коре в таком мизерном количестве, а ведь они и впрямь все радиоактивны.

Итак, слово произнесено: радиоактивность. Теперь мы просто обязаны разобраться подробнее в некоторых проблемах, связанных с этим свойством материи. И прежде всего необходимо поговорить о том, чем вызвана радиоактивность. Почему атомное ядро внезапно, без каких-либо воздействий извне, разрушается?

В одной из прежних книг я уже приводил ответ великого французского астронома Лапласа на вопрос о том, как он создает свои теории. Ответ настолько удачный, что мне хочется еще раз вспомнить его. Лаплас ответил кратко и остроумно:

— Я беру первую пришедшую мне в голову мысль и опровергаю ее по частям.

«Есть вещь одна — о ней упоминание запрещено…»

В славном полку гвардейцев-гасконцев можно было говорить обо всем. Следовало обходить, притом как можно тщательнее, лишь один предмет — нос. И все с пониманием относились к этому запрету: у отважнейшего из храбрых офицеров-гасконцев Сирано де Бержерака, тонкого лирического поэта и непостижимого по своему искусству фехтовальщика, означенная часть лица была слишком уж велика

[5]

.

В 20—30-х годах нашего века в среде химиков также не возбранялись разговоры на любую тему. Но считалось не очень этичным касаться некоторых проблем: зачем вызывать у своих коллег чувство досады, и так известно, что, пытаясь решить эти проблемы, загубила свои лучшие годы не одна сотня химиков и их соратников — физиков и геологов. Проблемы эти, сформулированные кратко и пронумерованные с канцелярской дотошностью, укладываются в три вопроса:

1. Почему аргона в атмосфере в 1000 раз больше, чем остальных инертных газов, вместе взятых?

2. В периодической системе аргон (порядковый номер 18) стоит перед калием (порядковый номер 19). Однако атомная масса аргона (39,9) заметно больше, чем калия (39,1). Но ведь с повышением порядкового номера должна увеличиваться и атомная масса. Почему же все элементы подчиняются общему правилу, а пара аргон — калий ведет себя так вызывающе?

3. Почему у калия, вопреки твердо установленному правилу, преобладает изотоп с массовым числом 39, в то время как калий-40, то есть изотоп типа 4p, которого-то и должно быть больше всего, в природном калии содержится в совсем уж жалком количестве: 0,01 %?

Элементы из воздуха

Давно известно, что самое трудное — начать. Калий и стал тем самым началом, которое было особенно трудным. Еще бы, появился естественный радиоактивный элемент, стоящий не в конце периодической системы, а в ее середине, точнее — в начале середины, а если быть совсем точным, то в конце начала периодической системы. Игра в слова? Как мы убедимся далее, совсем не игра.

Раз один из нетяжелых элементов может быть радиоактивным, то почему бы не обладать естественной радиоактивностью и другим элементам начала и середины периодической системы? Тем более, что общие законы строения атомного ядра не только не запрещают этого, а искренне и, можно сказать, дружелюбно предлагают.

…Не так давно в одном из журналов были приведены результаты достаточно широкого анкетного опроса поступающих в высшие учебные заведения. Много вопросов, интересных для новой и, судя по всему, важной и увлекательной науки социологии, содержала эта анкета, но нас в данном случае интересует один: мотивы выбора профессии. Так вот, свыше 90 % тех, кто подавал документы на геологические и географические факультеты, в качестве мотива назвали любовь к путешествиям. При этом многие из будущих Ферсманов и Пржевальских не скрывали своего жалостливого отношения к представителям «сидячих», комнатных профессий. К таковым абитуриенты в первую очередь относили архивистов и химиков.

Так вот, я знаком с несколькими химиками, которым доводилось совершать такие служебные командировки, каким позавидовал бы и Лаперуз. Так, например, группа химиков в марте 1961 года на судне «Михайло Ломоносов» вышла из Одессы и, пройдя через Средиземное море, вышла в Атлантический океан, достигла 30° южной широты, а затем вернулась в Калининград.

На протяжении всего рейса химики старательно вели анализ воздуха. Однако их интересовали отнюдь не традиционные компоненты атмосферы — азот, кислород, углекислый газ, инертные газы. Речь шла о совсем других элементах.