В книге изложены современные представления о функции клеток и нервной регуляции, а также о комплексной иерархической регуляции основных видов деятельности организма. В основу книги положены курсы лекций, прочитанных автором в течение ряда лет в МГУ им. М. В. Ломоносова и Гуманитарном институте.
Для студентов, аспирантов педагогических и гуманитарных университетов.
ВВЕДЕНИЕ
Почему нужно знать физиологию головного мозга психологу?
Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.
Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).
Успехи в исследовании мозга человека в настоящее время
В биологии существует принцип, который может быть сформулирован
как принцип единства структуры и функции.
Например, функция сердца (проталкивать кровь по сосудам нашего организма) полностью определяется строением и желудочков сердца, и клапанов, и прочего. Этот же принцип соблюдается и для головного мозга. Поэтому вопросы морфологии и анатомии головного мозга всегда считались очень важными при изучении деятельности этого сложнейшего органа.
Анатомия и морфология головного мозга – древняя наука. В названиях структур головного мозга сохранены имена древних анатомов – Виллизия, Сильвия, Роланда и многих других. Головной мозг человека состоит из
больших полушарий
– высшего центра его психической деятельности (см. приложение 1). Это самая большая часть нашего головного мозга.
Промежуточный мозг
состоит из двух неравноценных частей:
таламуса,
который является своеобразным распределителем (коллектором) сигналов, направляющихся к областям коры, в том числе сигналов от органов зрения, слуха и др., и
гипоталамуса
(расположенного под таламусом), который «заведует» в нашем организме вегетативными (обеспечивающими «растительную» жизнь нашего организма) функциями. Благодаря гипоталамусу происходят рост и созревание (в том числе половое) нашего организма, поддерживается постоянство внутренней среды, например поддержание температуры тела, выведение из организма шлаков, потребление пищи и воды и многие другие процессы.
Наконец, заднюю часть головного мозга занимает мозговой ствол, который, в свою очередь, состоит из ряда отделов: среднего мозга, моста и продолговатого мозга. Эти структуры принимают участие в осуществлении сложнейших функций организма – поддержании уровня кровяного давления, дыхании, установке взора, регулировании цикла сон–бодрствование, в проявлении ориентировочных реакций и многих других. Из мозгового ствола выходят 10 пар черепных нервов, благодаря деятельности которых осуществляется множество функций: регуляции функций сердца и дыхания, деятельность лицевой мускулатуры, восприятие сигналов из внешнего мира и внутренней среды. Всю сердцевину мозгового ствола занимает ретикулярная (сетчатая) формация. Деятельность этой структуры определяет цикл сон–бодрствование, нарушение ее целостности приводит к грубым нарушениям сознания, которое врачи называют комой. Над мостом находится мозжечок, или малый мозг.
Мозжечок
Спинной мозг
Нейробиологический подход к исследованию нервной системы человека
В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название
нейробиологии.
Дело в том, что мозг современного человека является продуктом длительной эволюции жизни на Земле. На пути этой эволюции, которая на Земле началась примерно 3–4 млрд лет тому назад и продолжается в наше время, Природой перебирались многие варианты устройства центральной нервной системы и ее элементов. Например, нейроны, их отростки, процессы, протекающие в нейронах, остаются неизменными как у примитивных животных (например, членистоногих, рыб, амфибий, рептилий и др.), так и у человека. Это означает, что Природа остановилась на удачном образце своего творения и не изменяла его на протяжении сотен миллионов лет. Так произошло со многими структурами головного мозга. Исключение представляют большие полушария головного мозга. Они уникальны в мозге человека. Поэтому нейробиолог, имея в своем распоряжении огромное число объектов исследования, всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. На рис. 7 схематично показан один из классических объектов современной нейрофизиологии – головоногий моллюск кальмар и нервное волокно (так называемый гигантский аксон), на котором были выполнены классические исследования по физиологии возбудимых мембран.
В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Какие же вопросы способна решить нейробиология своими методами? Прежде всего – исследование механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500–1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии (см. рис. 7). Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны – диаметром до 1000 мкм. Эти нейроны являются излюбленными объектами при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами. Ряд вопросов передачи возбуждения от одного нейрона другому исследуется на нервно-мышечном соединении –
Часть I
ФИЗИОЛОГИЯ ГОЛОВНОГО МОЗГА ЧЕЛОВЕКА
Глава 1.
Развитие нервной системы человека
Глава 2.
Клетка – основная единица нервной ткани
Глава 3.
Активирующие системы мозга
Глава 4.
Физиологические механизмы регуляции вегетативных функций и инстинктивного поведения
Глава 1
РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА
ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ
После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой –
эктодерма,
внутренний –
эндодерма
и между ними –
мезодерма.
Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.
В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.
Глава 2
КЛЕТКА – ОСНОВНАЯ ЕДИНИЦА НЕРВНОЙ ТКАНИ
Головной мозг человека состоит из огромного количества разнообразных клеток. Клетка – основная единица биологического организма. Наиболее просто организованные животные могут иметь всего одну клетку. Сложные организмы состоят из мириадов клеток и являются, таким образом, многоклеточными. Но во всех этих случаях единицей биологического организма остается клетка. Клетки разных организмов – от человека до амебы – устроены очень похоже (рис. 2.1). Клетка окружена
мембраной,
которая отделяет цитоплазму от окружающей среды. Центральное место в клетке занимает ядро, в котором находится генетический аппарат, хранящий генетический код строения всего нашего организма. Но каждая клетка использует в своей жизнедеятельности только незначительную часть этого кода. Кроме ядра, в цитоплазме находится много других органелл (частиц). Среди них одной из самых важных является
эндоплазматический ретикулум,
составленный из многочисленных мембран, на которых закреплено множество
рибосом.
На рибосомах происходит сборка молекул белка из отдельных аминокислот по программе генетического кода. Часть эндоплазматического ретикулума представлена
аппаратом Гольджи
(стопки двойных мембран, плотно прилежащих друг к другу). Таким образом, эндоплазматический ретикулум – это своеобразная фабрика, оснащенная всем необходимым для производства белковых молекул. Другими очень важными органеллами клетки являются
митохондрии,
благодаря деятельности которых в клетке постоянно поддерживается необходимое количество АТФ (аденозинтрифосфата) – универсального «горючего» клетки.
Нейрон, являющийся структурной основной единицей нервной ткани, имеет все перечисленные выше структуры. Вместе с тем нейрон предназначен природой для обработки информации и в связи с этим имеет определенные особенности, которые биологи называют специализацией. Выше был описан самый общий план строения клетки. На самом деле любая клетка нашего организма приспособлена природой для выполнения строго определенной, специализированной функции. Например, клетки, составляющие сердечную мышцу, обладают способностью сокращаться, а клетки кожи защищают наш организм от проникновения микроорганизмов.
ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ
Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до
9 / 10
в некоторых областях мозга) занята клетками
глии
(от греч. склеивать). Дело в том, что нейрон выполняет в нашем организме гигантскую очень тонкую и трудную работу, для чего неоходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. – это обеспечивается другими, обслуживающими клетками, т.е. клетками глии (рис. 2.2.). В головном мозге выделяются три типа клеток глии: микроглию, олигодендроглию и астроглию, каждая из которых обеспечивает только ей предназначенную функцию. Клетки микроглии участвут в образовании мозговых оболочек, олигодендроглии – в образовании оболочек (милеиновх чехлов) вокруг отдельных отростков нервных клеток. Миелиновые оболочки вокруг периферических нервных волокон образуются специальными гниальными клетками – шванновскими клетками. Астроциты находятся вокруг нейронов, обеспечивая их механическую защиту, а кроме того, доставляют в нейрон питательные вещества и убирают шлаки. Клетки глии обеспечивают также электрическую изоляцию отдельных нейронов от воздействия других нейронов. Важной особенностью клеток глии является то, что в отличии от нейронов они сохраняют способность делиться на протяжении всей своей жизни. Это деление в некоторых случаях приводит к опухолевым заболеваниям головного мозга человека. Нервная клетка настолько специализирована, что утеряла способность к делению. Таким образом, нейроны нашего мозга, однажды образовавшись из клеток-предшественников (нейробластов), живут с нами всю нашу жизнь. На этом длительном пути мы только теряем нейроны нашего мозга.
НЕЙРОН
Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей:
сомы
(тела) и многочисленных разветвленных отростков. У каждого нейрона есть два типа отростков:
аксон,
по которому возбуждение передается от нейрона к другому нейрону, и многочисленные
дендриты
(от греч. дерево), на которых заканчиваются
синапсами
(от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.
Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.
На рис. 2.3 показана схема нейрона, на которой легко прослеживаются его основные части.
Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна (рис. 2.4). Нейроны, расположенные на выходе нейронной сети какой-то структуры, имеют длинный аксон, по которому возбуждение покидает данную мозговую структуру. Например, нейроны двигательной коры головного мозга, так называемые пирамиды Беца (названные в честь киевского анатома Б. Беца, впервые их описавшего в середине XIX века), имеют у человека аксон около 1 м, он соединяет двигательную кору больших полушарий с сегментами спинного мозга. По этому аксону передаются «двигательные команды», например «пошевелить пальцами ноги». Как возбуждается нейрон? Основная роль в этом процессе принадлежит мембране, которая отделяет цитоплазму клетки от окружающей среды. Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7–11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые
ВОЗБУЖДЕНИЕ НЕЙРОНА
Нейрон в отличие от других клеток способен возбуждаться.
Под возбуждением нейрона понимают генерацию нейроном потенциала действия.
Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов – натрия и калия – имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.
Ответим на вопрос: как ионные каналы открываются и закрываются? В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка –70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается (рис. 2.6). Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется
потенциалзависимым.
Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту.Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону
деполяризации,
т.е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется. Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют
Все изложенное выше можно формально описать следующим образом. В покое клетка ведет себя как «калиевый электрод», а при возбуждении – как «натриевый электрод». Однако после того как потенциал на мембране достигнет своего максимального значения +55 мВ, натриевый ионный канал со стороны, обращенной в цитоплазму, закупоривается специальной белковой молекулой. Это так называемая «натриевая инактивация» (см. рис. 2.6); она наступает примерно через 0,5–1 мс и не зависит от потенциала на мембране. Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию-состоянию покоя, необходимо, чтобы из клетки выходил ток положительных частиц. Такими частицами в нейронах являются ионы калия. Они начинают выходить через открытые калиевые каналы. Вспомните, что в клетке в состоянии покоя накапливаются ионы калия, поэтому при открывании калиевых каналов эти ионы покидают нейрон, возвращая мембранный потенциал к исходному уровню (уровню покоя). В результате этих процессов мембрана нейрона возвращается к состоянию покоя (–70 мВ) и нейрон готовится к следующему акту возбуждения.
ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ
Возбуждение в виде потенциала действия покидает тело нейрона по его отростку, который называется аксоном. Аксоны отдельных нейронов обычно объединяются в пучки –
нервы,
а сами аксоны в этих пучках называются
нервными волокнами.
Природа позаботилась, чтобы волокна максимально хорошо справлялись с функцией проведения возбуждения в виде потенциалов действия. Для этой цели отдельные нервные волокна (аксоны отдельных нейронов) имеют специальные чехлы, выполненные из хорошего электрического изолятора (см. рис. 2.3). Чехол прерывается примерно через каждые 0,5–1,5 мм; это связано с тем, что отдельные участки чехла образуются в результате того, что специальные клетки в очень ранний период развития организма (в основном еще до рождения) обволакивают небольшие участки аксона. На рис. 2.9 показано, как это происходит. В периферических нервах миелин образуется клетками, которые получили название
шванновских,
а в головном мозге это происходит за счет клеток олигодендроглии.
Этот процесс называется
миелинизацией,
так как в результате образуется чехол из вещества миелина, примерно на 2/3 состоящего из жира и являющегося хорошим электрическим изолятором. Исследователи придают очень большое значение процессу миелинизации в развитии мозга.
Глава 3
АКТИВИРУЮЩИЕ СИСТЕМЫ МОЗГА
ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ СНА
Природа сна постоянно интересует врачей, ученых разных специальностей-биологов, психологов, философов, да и простых людей. Величайшие мыслители уже давно обсуждали эту проблему. Великий врач древности Гиппократ полагал, что сон возникает в результате оттока крови и тепла во внутренние области тела. Другой великий античный ученый Аристотель (384–322 гг. до н.э.) объяснял сон тем, что пары, возникающие при переваривании пищи в желудке, разносятся по всему телу через гуморы (жидкости), вызывая сон. Это объяснение владело умами европейских ученых и принималось на веру почти две тысячи лет.
Несмотря на то, что все высшие позвоночные животные спят, а человек проводит во сне не менее трети своей жизни, природа и назначение этого состояния оставались неизвестными на протяжении веков. Хорошо известна была лишь витальная (жизненная, от лат. vita – жизнь) необходимость сна. Сон улучшает настроение, память, восстанавливает работоспособность человека. Психиатры всегда подчеркивали, что расстройство сна нередко является первым симптомом (признаком) психического заболевания. Современное состояние этой проблемы определяется открытиями в науке начала XX века. В свою очередь, эти открытия стали возможны благодаря созданию новых методов исследования. Прежде всего это методы полиграфической регистрации физиологических процессов во время сна (т.е. одновременной регистрации нескольких физиологических функций работы сердца, дыхания, мозга). Большую роль сыграли также методы биохимического анализа биологически активных веществ, участвующих в процессах сна, и, наконец, психологические исследования, благодаря которым стремительно накапливались новые данные, однако интегрировать их в целостную концепцию оказалось весьма непросто.
Теперь уже стало очевидным, что сон высших млекопитающих, включая человека, представляет собой не просто покой, т.е. отсутствие активности, а особое состояние нервной высшей деятельности, и это состояние не однородно. Краткая история вопроса такова. В лаборатории И. П. Павлова (начало XX века) было отмечено: если собакам предъявляли монотонные раздражители, например многократное повторение легкого прикосновения (касалкой) к коже бедра задней лапы, это вызывало у животных сонливость, и они часто засыпали. Из этого наблюдения был, сделал вывод, что сон представляет собой широко разлившееся торможение (условное) по коре больших полушарий. Назначение такого торможения состоит в защите головного мозга собаки от монотонных раздражителей. Говоря о представлениях павловской школы о сне, нельзя не упомянуть случай, который приводился И. П. Павловым для иллюстрации своей концепции. В Германии в клинику профессора Штрюмпеля поступил больной, который в результате травмы потерял зрение и слух, вернее – у него слышало одно ухо и сохранились остатки зрения в одном глазу. Когда эти оба «окна в мир» закрывали, больной засыпал. В дальнейшем в лаборатории И. П. Павлова были проведены опыты на собаках, подтвердившие наблюдения, сделанные в клинике профессора Штрюмпеля. И. П. Павлов пришел к выводу, что если исключить постоянный приток импульсов в кору больших полушарий от органов чувств, – наступает сон.
Решающее значение в понимании нейрофизиологических механизмов сна имели работы по исследованию биоэлектрических процессов головного мозга животных и человека. В начале нашего столетия Г. Бергер (1905) зарегистрировал от головного мозга человека, находящегося в спокойном состоянии, синусоидальные колебания электрического потенциала с частотой 8–11 Гц. Этот ритм получил название
В 30-х годах нашего столетия стало известно, что перерезка у кошки мозгового ствола на уровне среднего мозга (препарат спящего мозга) вызывает сон. Этот факт был хорошо известен врачам, и они называли это состояние
ПСИХИЧЕСКАЯ АКТИВНОСТЬ ВО СНЕ
В конце прошлого столетия З. Фрейд высказал мнение, что сновидения выполняют катарсическую (цензурную) функцию, являясь своеобразными клапанами для «не отрегулированных в бодрствовании мотивов». Согласно психоаналитической концепции эти мотивы не могут быть «допущены» в бодрствующее сознание, поскольку «находятся в непримиримой конфронтации с социальными установками (моралью общества) поведения индивида». В сновидении эти мотивы, согласно концепции З. Фрейда, в трансформированном виде достигают сознания вследствие того, что «цензура» сознания ослаблена. Это предположение очень трудно проверить экспериментально. Вместе с тем концепция не получила полного подтверждения. Например, не обнаружено специфики влияния каждого из периодов сна («медленного» и «быстрого») на отдельные психические функции, которые можно тестировать по батарее психологических тестов.
Врачи отмечают, что наиболее заметно влияет на психику общая длительность сна. Как показали специальные исследования влияния депривации «быстрого» сна, это в значительной степени определяется психическим статусом личности субъекта, а также существенно зависит от характера предъявляемых психологических тестов.
Эти данные в общем не противоречат концепции З. Фрейда, который считал, что сновидения служат для разрядки определенных мотивов (например, агрессивности или сексуальности). Данные последнего времени говорят в пользу того, что сновидения могут быть и в «медленном» сне. Отсюда делается вывод, что потребность в сновидениях существует независимо от потребности в «быстром» сне как таковом и может быть даже первичной по отношению к определенным стадиям сна.
В последние годы получены данные об изменении структуры сна при обучении или при адаптации к новым условиям. Исследования в этом направлении приводят к заключению, что «быстрый» сон и сновидения необходимы для адаптации к информационно значимой ситуации и для усвоения только такой информации, к восприятию которой индивид не готов. В этой концепции не определено главное – для чего нужен «быстрый» сон? На этот вопрос есть несколько ответов. Например, можно предположить, что стадия «быстрого» сна в сложных ситуациях нужна для нахождения новых путей взаимодействия с этой ситуацией. Возможно, именно во время «быстрого» сна происходит творческое решение поставленной задачи. Другой ответ может состоять в предположении, что пути решения в новой ситуации находятся во время бодрствования, а закрепление (консолидация) путей решения творческой задачи происходит в «быстрой» фазе сна. Другими словами, «быстрая» фаза сна служит для улучшения мнестических процессов. Возможно, что «быстрый» сон только способствует консолидации за счет устранения препятствий (например, в этой стадии сна происходит блокирование входящей информации).
В настоящее время накоплены многочисленные сведения о психической активности человека во время различных стадий сна. При засыпании изменение психики происходит в следующей последовательности. Вначале наступает утрата волевого контроля за своими мыслями; затем присоединяется неуверенность в окружающей обстановке, элементы дереализации (нарушение контакта с реальностью). Эти изменения психики обычно объединяют под названием «регрессивный тип мышления». Под этим понимают мышление со следующими характеристиками: наличие единичных изолированных впечатлений или изолированных образов; наличие неполных (отрывочных) сцен; неадекватные, иногда фантастические представления; диссоциация зрительных образов и мыслей (зрительные образы не совпадают с направлением мыслей). Вместе с тем человек не утрачивает полностью контакта с внешним миром. В период засыпания психическая активность весьма многообразна. Часто возникают так называемые
Глава 4
ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ ВЕГЕТАТИВНЫХ ФУНКЦИЙ И ИНСТИНКТИВНОГО ПОВЕДЕНИЯ
К вегетативным относят те функции, которые обеспечивают обмен веществ в нашем организме (пищеварение, кровообращение, дыхание, выделение и др.). К ним относят также обеспечение роста и развития организма, размножения, подготовку организма к неблагоприятным воздействиям. Нервная вегетативная система обеспечивает регуляцию деятельности внутренних органов, сосудов, потовых желез и другие подобные функции.
ПЕРИФЕРИЧЕСКАЯ ЧАСТЬ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ
Нервная вегетативная система регулирует обмен веществ, возбудимость и автономную работу внутренних органов, а также физиологическое состояние тканей и отдельных органов (в том числе головного и спинного мозга), приспосабливая их деятельность к условиям окружающей среды.
Нервная периферическая вегетативная система делится на
симпатическую
и
парасимпатическую.
Симпатический отдел нервной вегетативной системы обеспечивает мобилизацию имеющихся у организма ресурсов (энергетических и интеллектуальных) для выполнения срочной работы. Ясно, что это может приводить к нарушениям равновесия в организме. Восстановление равновесия и постоянства внутренней среды организма является задачей нервной парасимпатической системы. Для этого необходимо непрерывно подправлять сдвиги, вызванные влияниями симпатического отдела, восстанавливать и поддерживать
гомеостаз [1] .
В этом смысле деятельность этих отделов нервной вегетативной системы в ряде реакций проявляется как антагонистическая.
Центры нервной вегетативной системы находятся в мозговом стволе и спинном мозге (см. приложение 3). В мозговом стволе и в крестцовом отделе спинного мозга расположены центры нервной парасимпатической системы. В среднем мозге находятся центры, регулирующие расширение зрачка и аккомодацию глаза. В продолговатом мозге имеются центры нервной парасимпатической системы, от которых отходят волокна в составе блуждающего, лицевого и языкоглоточного нервов. Эти центры участвуют в осуществлении целого ряда функций, в том числе регулируют деятельность ряда внутренних органов (сердца, желудка, кишечника, печени и т.д.), являются «запускающими» для выделения слюны, слезной жидкости и т.д. Все эти функции осуществляются по рефлекторному принципу (по типу ответной реакции на раздражитель). Ниже будут описаны некоторые из этих рефлексов. В крестцовых сегментах спинного мозга также находятся центры нервной парасимпатической вегетативной системы. Волокна от них идут в составе тазовых нервов, которые иннервируют органы таза (толстый кишечник, мочевой пузырь, половые органы и пр.).
В грудных и поясничных сегментах спинного мозга находятся спинномозговые центры нервной симпатической вегетативной системы. Вегетативные волокна от этих центров отходят в составе передних корешков спинного мозга вместе с двигательными нервами.
Все перечисленные выше центры симпатической и нервной парасимпатической системы подчинены высшему вегетативному центру –
ВЕГЕТАТИВНЫЕ ЦЕНТРЫ МОЗГОВОГО СТВОЛА
В продолговатом мозге расположены нервные центры, тормозящие деятельность сердца (ядра блуждающего нерва). В ретикулярной формации продолговатого мозга находится
сосудодвигательный центр,
состоящий из двух зон: прессорной и депрессорной. Возбуждение прессорной зоны приводит к сужению сосудов, а возбуждение депрессорной зоны – к их расширению. Сосудодвигательный центр и ядра блуждающего нерва постоянно посылают импульсы, благодаря которым поддерживается постоянный тонус: артерии и артериолы постоянно несколько сужены, а сердечная деятельность замедлена.
В продолговатом мозге находится
дыхательный центр,
который, в свою очередь, состоит из центров вдоха и выдоха. На уровне моста находится центр дыхания (пневмотаксический центр) более высокого уровня, который приспосабливает дыхание к изменениям физической нагрузки. Дыхание у человека может управляться также произвольно со стороны коры больших полушарий, например во время речи.
В продолговатом мозге находятся центры, возбуждающие секрецию слюнных, слезных и желудочных желез, выделение желчи из желчного пузыря, секрецию поджелудочной железы. В среднем мозге под передними буграми четверохолмия находятся парасимпатические центры аккомодации глаза и зрачкового рефлекса. Все перечисленные выше центры симпатической и нервной парасимпатической системы подчинены высшему вегетативному центру –
гипоталамусу.
Гипоталамус, в свою очередь, подвержен влиянию ряда других центров головного мозга. Все эти центры образуют лимбическую систему.
ЛИМБИЧЕСКАЯ СИСТЕМА ГОЛОВНОГО МОЗГА
Лимбическая система в мозге человека выполняет очень важную функцию, которая называется
мотивационно-эмоциональной.
Чтобы было ясно, что это за функция, вспомним: каждый организм, включая организм человека, имеет целый набор биологических потребностей. К ним, например, относятся потребность в пище, воде, тепле, размножении и многое другое. Для достижения какой-то определенной биологической потребности в организме складывается
функциональная система
(рис. 4.3). Ведущим системообразующим фактором является достижение определенного результата, соответствующего потребностям организма в данный момент. Начальным узловым механизмом функциональной системы является афферентный синтез (левая часть схемы на рис. 4.3).
Афферентный синтез
включает доминирующую мотивацию (например, пищевую – поиск пищи и ее потребление), обстановочную афферентацию (событий внешней и внутренней среды), пусковую афферентацию и память. Память необходима для реализации биологической потребности. Например, щенка, которого только отняли от соска, невозможно накормить мясом потому, что он не воспринимает его как пищу. Только через некоторое количество проб (запоминается вид пищи, ее запах и вкус, обстановка и многое другое) щенок начинает употреблять в пищу мясо. Интеграция этих компонентов приводит к принятию решения. Последнее, в свою очередь, связано с определенной программой действия, параллельно с ней формируется также акцептор результатов действия, т.е. нервная модель будущих результатов. Информация о параметрах результата через обратную связь поступает в акцептор действия для сопоставления с ранее сформированной моделью. Если параметры результата не соответствуют модели, то здесь возникает возбуждение, которое через ретикулярную формацию мозгового ствола активирует ориентировочную реакцию, и происходит коррекция программы действия. Примеры некоторых биологических мотиваций будут приведены ниже.
Организм имеет также специальный механизм для оценки биологической значимости биологической мотивации. Это
ФИЗИОЛОГИЯ ГИПОТАЛАМУСА
Гипоталамус находится в основании головного мозга человека и составляет стенки III мозгового желудочка. Стенки к основанию переходят в воронку, которая заканчивается
гипофизом
(нижней мозговой железой). Гипоталамус является центральной структурой лимбической системы мозга и выполняет многообразные функции. Часть этих функций относится к гормональным регуляциям, которые осуществляются через гипофиз. Другие функции связаны с регуляцией биологических мотиваций. К ним относят потребление пищи и поддержание массы тела, потребление воды и водно-солевой баланс в организме, регуляцию температуры в зависимости от температуры внешней среды, эмоциональных переживаний, мышечной работы и других факторов, функцию размножения. Она включает у женщин регулирование менструального цикла, вынашивание и рождение ребенка, кормление и многое другое. У мужчин – сперматогенез, половое поведение. Здесь перечислены только некоторые основные функции, которые будут рассмотрены в учебнике. Гипоталамус играет также центральную роль в реакции организма на стрессовые воздействия.
Несмотря на то, что гипоталамус занимает не очень большое место в головном мозге (его площадь, если смотреть на мозг с основания, не превышает в мозге взрослого человека площади ногтя большого пальца руки), он имеет в своем составе около четырех десятков ядер. На рис. 4.5 показаны только некоторые из них. В составе гипоталамуса находятся нейроны, вырабатывающие гормоны или специальные вещества, которые в дальнейшем, действуя на клетки соответствующих эндокринных желез, приводят к выделению или прекращению выделения гормонов (так называемые рилизинг-факторы от англ. release – выделять). Все эти вещества вырабатываются в нейронах гипоталамуса, затем транспортируются по их аксонам в гипофиз. Ядра гипоталамуса связаны с гипофизом гипоталамо-гипофизарным трактом, который состоит примерно из 200 000 волокон. Свойство нейронов вырабатывать специальные белковые секреты и затем их транспортировать для выброса в кровяное русло называется