Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!
Предисловие
Возьмите пустую бутылку и понаблюдайте за ней. На первый взгляд ничего интересного: сосуд остается неподвижным, а его невидимое содержимое — неизменным. И кажется, что тратить время на математическое описание содержимого бутылки — абсурд: движения нет, следовательно, и объяснения излишни.
Однако действительность оказывается намного сложнее. Содержимое бутылки — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями, ударяясь о стенки сосуда с силой, достаточной для того, чтобы противостоять атмосферному давлению снаружи. Каждая из этих молекул движется в соответствии с законами, открытие которых состоялось благодаря работе великих математиков, таких как
Уильям Роуэн Гамильтон (1805–1865)
или
Жозеф Луи Лагранж (1736–1813).
Законы, управляющие молекулами газа, — это мощные математические структуры. Они являются предметом изучения физики, но сфера их действия выходит далеко за пределы этой науки. Собственно, для физики это очень типично: каждая конкретная проблема влечет появление математического решения, которое затем уточняется и совершенствуется, пока не находит новые области применения. Иногда такое решение, пройдя долгий и сложный путь, вновь возвращается в сугубо физическую сферу. Поведение газа иллюстрирует многочисленные математические теории, принципиальные для понимания современного мира. Как видите, в неизменном содержимом пустой бутылки кроется невероятная сложность.
Знание законов, которым подчиняются молекулы газа, — важный, но недостаточный шаг для определения их поведения. Из-за громадного количества частиц любые прогнозы невозможны, и на первый план выходит случайность. Именно в этой сфере лежат истоки статистики и вероятности, которые
Людвиг Больцман (1844–1906)
использовал для объяснения поведения газа, основываясь на поведении его микроскопических составляющих. Труд Больцмана породил современное понятие энтропии, которое затем было уточнено и расширено, пока не легло в основу теории информации и не стало главным элементом в понимании Вселенной.
Несмотря на усилия Больцмана, до середины прошлого века научное сообщество не могло объяснить такие системы, как земная атмосфера, характеризующаяся постоянным притоком энергии. Новые математические инструменты привели к понятию диссипативной системы и к серии неожиданных прогнозов, в которых живые творения оказываются гораздо ближе к инертным веществам, чем казалось вначале. Такие математические курьезы, как игра жизни, показали, что сложность присуща не только биологическим процессам, но может проявляться в результате работы ограниченного количества простых правил.
Глава 1
Ленивая частица
Когда
Исааку Ньютону (1642–1727)
удалось объяснить небесную и земную механику одним-единственным уравнением, это стало толчком для существенных подвижек в понимании природы. Внезапно оказалось, что яблоки падают не потому, что имеют естественную тенденцию двигаться вниз, а потому, что на них воздействует та же сила, что и на другие тела во Вселенной. Введение внешней по отношению к этим телам силы исключало необходимость говорить о какой-то предрасположенности: деревянные бруски, движимые внешней силой, останавливались после прекращения ее действия не потому что покой — это естественное состояние бруска, а из-за силы трения. Теперь физические объекты могли считаться субъектами, не наделенными волей, а всю Вселенную можно было представить как шестеренку отлаженного механизма.
Восприятие Вселенной как механизма появилось в XVIII веке, и его отголоски живы до сих пор, хотя и с некоторыми изменениями. Понимание того, что все природные явления можно объяснить с помощью математических законов, стимулировало научный прогресс после Ньютона. Сферы, которые столетиями были предметом философского анализа, одна за другой склонялись перед научным методом.
Введенные Ньютоном инструменты использовались для объяснения таких явлений, как электричество, магнетизм или тепло, и результатом было рождение ряда новых физических дисциплин, к примеру электромагнетизма или термодинамики.
Однако до удовлетворительного описания газовой динамики методами механики оставалось еще два века: физическое сообщество отказывалось принять идею существования атомов, а в тех редких случаях, когда подобное предположение принималось, это преследовало скорее математические цели, не имевшие никакого отношения к реальной действительности. К тому же математический аппарат того времени не был предназначен для решения таких сложных задач. Даже если принять существование атомов и молекул, уравнения, описывавшие их движения, оказались слишком сложными. Некоторые их решения были найдены лишь через 200 лет, но в целом проблема так и осталась нерешенной.