Этот «цифровой» физический мир

Гришаев Андрей Альбертович

Трагедия многих талантливых одиночек, которые пытаются переосмыслить или даже подредактировать официальную физическую картину мира, заключается в том, что они основывают свои построения отнюдь не на экспериментальных реалиях. Талантливые одиночки читают учебники – наивно полагая, что в них изложены факты. Отнюдь: в учебниках изложены готовенькие интерпретации фактов, адаптированные под восприятие толпы. Причём, эти интерпретации выглядели бы очень странно в свете подлинной экспериментальной картины, известной науке. Поэтому подлинную экспериментальную картину намеренно искажают – в книге приведено множество свидетельств о том, что ФАКТЫ частью замалчиваются, а частью перевраны. И ради чего? Ради того, чтобы интерпретации выглядели правдоподобно – будучи в согласии с официальными теоретическими доктринами. На словах у учёных мужей получается красиво: ищем, мол, истину, а критерий истины – практика. А на деле у них критерием истины оказываются принятые теоретические доктрины. Ибо, если факты не вписываются в такую доктрину, то перекраивают не теорию, а факты. Ложная теория оказывается подтверждена лживой практикой. Зато самолюбие учёных не страдает. Мы, мол, верной дорогой шли, идём, и идти будем!

Это не очередная «теория заговора». Просто каждый учёный понимает, что если он «попрёт против течения», то он будет рисковать репутацией, карьерой, финансированием…

Успехи современных технологий не имеют к физическим теориям почти никакого отношения. Раньше мы были хорошо знакомы с ситуацией, когда на глючном и сбойном программном обеспечении иногда удавалось сделать что-то полезное. Выясняется, что достойную конкуренцию продукции крутых парней из Рэдмонда могут составить физические теории. Например, Эйнштейн тормознул физику своими творениями конкретно лет на сто. И атомную бомбу сделали не

благодаря

теории относительности, а

вопреки

ей. Но проблема не только лично в Эйнштейне с эпигонами, которые вслед за мэтром принялись наперебой навязывать реальности свои надуманные «аксиомы» и «постулаты», «наваривая» на этом «научную репутацию» и «конкретные бабки». Всё гораздо серьезнее.

Добро пожаловать в реальный, то есть, «цифровой» физический мир!

Раздел 1. ОСНОВНЫЕ КАТЕГОРИИ «ЦИФРОВОГО» МИРА

1.1. О чём мы, собственно?

В истории медицины был такой клинический случай.

«

Примерно до середины 19 века в акушерских клиниках Европы свирепствовала родильная лихорадка. В отдельные годы она уносила до 30 и более процентов жизней матерей, рожавших в этих клиниках. Женщины предпочитали рожать в поездах и на улицах, лишь бы не попасть в больницу, а ложась туда, прощались с родными так, будто шли на плаху. Считалось, что эта болезнь носит эпидемический характер, существовало около 30 теорий ее происхождения. Ее связывали и с изменением состояния атмосферы, и с почвенными изменениями, и с местом расположения клиник, а лечить пытались всем, вплоть до применения слабительного. Вскрытия всегда показывали одну и ту же картину: смерть произошла от заражения крови.

Ф.Пахнер приводит такие цифры: "...за 60 лет в одной только Пруссии от родильной лихорадки умерло 363624 роженицы, т.е. больше, чем за то же время от оспы и холеры, вместе взятых... Смертность в 10% считалась вполне нормальной, иначе говоря из 100 рожениц 10 умирало от родильной лихорадки..." Из всех заболеваний подвергавшихся тогда статистическому анализу, родильная лихорадка сопровождалась наибольшей смертностью.

В 1847 г. 29-летний врач из Вены, Игнац Земмельвейс открыл тайну родильной лихорадки. Сравнивая данные в двух различных клиниках, он пришел к выводу, что виной этому заболеванию служит неаккуратность врачей, осматривавших беременных, принимавших роды и делавших гинекологические операции нестерильными руками и в нестерильных условиях. Игнац Земмельвейс предложил мыть руки не просто водой с мылом, но дезинфицировать их хлорной водой - в этом была суть новой методики предупреждения болезни.

Окончательно и повсеместно учение Земмельвейса не было принято при его жизни, он умер в 1865 г., т.е. через 18 лет после своего открытия, хотя было чрезвычайно просто проверить его правоту на практике. Более того, открытие Земмельвейса вызвало резкую волну осуждения не только против его методики, но и против него самого (восстали все светила врачебного мира Европы).

1.2. Последовательное или параллельное управление физическими объектами?

Сегодня даже дети что-нибудь да знают про персональные компьютеры. Поэтому, в качестве детской иллюстрации к предлагаемой модели физического мира, можно привести следующую аналогию: мирок виртуальной реальности на компьютерном мониторе и программное обеспечение этого мирка, которое находится не на мониторе, а на другом уровне реальности – на жёстком диске компьютера. Придерживаться концепции о самодостаточности физического мира – это примерно то же самое, что всерьёз утверждать, будто причины мигания пикселей на мониторе (да ведь как согласованно мигают: картинки нас завораживают!) находятся в самих пикселях или, по крайней мере, где-то между ними – но там же, на экране монитора. Ясно, что, при таком нелепом подходе, в попытках объяснить причины этих дивных картинок неизбежно придётся плодить иллюзорные сущности. Ложь будет порождать новую ложь, и т.д. Причём, подтверждения этого потока лжи будут, казалось бы, налицо – ведь пиксели, как ни крути, мигают!

Но, всё-таки, эту компьютерную аналогию мы привели за неимением лучшего. Она весьма неудачна, поскольку программная поддержка бытия физического мира осуществляется по принципам, реализация которых в компьютерах сегодня запредельно недосягаема.

Принципиальное различие здесь заключается в следующем. В компьютере работает процессор, который, за каждый рабочий такт, выполняет логические операции с содержимым весьма ограниченного количества ячеек памяти. Это называется «режим последовательного доступа» - чем больше объём задания, тем большее время требуется для его выполнения. Можно повышать тактовую частоту процессора или увеличивать число самих процессоров – принцип последовательного доступа при этом как был, так и остаётся. Физический же мир живёт по-другому. Представляете, что в нём творилось бы, если электроны управлялись бы в режиме последовательного доступа – и каждый электрон, чтобы изменить своё состояние, должен был бы дожидаться, пока будут опрошены все остальные электроны! Дело ведь не в том, что электрон мог бы и подождать, если «тактовую частоту процессора» сделать фантастически высокой. Дело в том, что мы видим: несметные количества электронов изменяют свои состояния одновременно и независимо друг от друга. Значит, они управляются по принципу «параллельного доступа» - каждый индивидуально, но все сразу! Значит, к каждому электрону подключен стандартный управляющий пакет, в котором прописаны все предусмотренные варианты поведения электрона – и этот пакет, не обращаясь к главному «процессору», управляет электроном, немедленно отзываясь на ситуации, в которых тот оказывается!

Вот, представьте: часовой на посту. Возникает тревожная ситуация. Часовой хватает трубку: «Товарищ капитан, ко мне идут два амбала! Чё делать?» - а в ответ: «Линия занята… Ждите ответа…» Потому что у капитана сотня таких разгильдяев, и каждому он разъясняет – что делать. Вот он, «последовательный доступ». Слишком зацентрализованное управление, оборачивающееся катастрофой. А при «параллельном доступе» часовой сам знает, что делать: все мыслимые сценарии ему втолковали заранее. «Бах!» - и тревожная ситуация отработана. Скажете, что это «тупо»? Что это «автоматично»? Но на том и стоит физический мир. Где вы видели, чтобы электрон рассуждал, вправо или влево ему свернуть, пролетая рядом с магнитом?

Конечно, не только поведение электронов управляется индивидуально подключенными пакетами программ. Структуро-образующие алгоритмы, благодаря которым существуют атомы и ядра, тоже работают в режиме параллельного доступа. И даже для каждого кванта света выделяется отдельный канал программы-навигатора, которая просчитывает «путь» этого кванта.

1.3. Некоторые принципы работы программного обеспечения физического мира.

Обеспеченность бытия физического мира программными средствами является приговором для многих моделей и понятий современной теоретической физики, поскольку функционирование программного обеспечения происходит по принципам, учёт которых ограничивает полёт теоретических фантазий.

Прежде всего, если бытие физического мира программно обеспечено, то это бытие – полностью алгоритмизовано. Любой физический объект является воплощением чёткого набора алгоритмов. Поэтому адекватная теоретическая модель этого объекта, конечно же, возможна. Но эта модель может быть основана лишь на верном знании соответствующего набора алгоритмов. Причём, адекватная модель должна быть свободна от внутренних противоречий, поскольку от них свободен соответствующий набор алгоритмов – иначе он был бы неработоспособен. Аналогично, адекватные модели различных физических объектов должны быть свободны от противоречий между собой.

Разумеется, пока мы не обладаем полным знанием всего набора алгоритмов, обеспечивающих бытие физического мира, противоречия в наших теоретических воззрениях на физический мир неизбежны. Но уменьшение числа этих противоречий свидетельствовало бы о нашем продвижении к истине. В современной же физике, наоборот, число вопиющих противоречий лишь возрастает со временем – а это значит, что здесь происходит продвижение совсем не к истине.

Каковы же основные принципы организации программного обеспечения бытия физического мира? Есть программы, которые представляет собой набор пронумерованных команд-операторов. Последовательность их выполнения детерминирована, начинаясь оператором «Начать работу» и заканчиваясь оператором «Закончить работу». Если такая программа, будучи запущенной, не влипнет в сбойную ситуацию вроде зацикливания, то она непременно доберётся до «конца» и успешно остановится. Как можно видеть, на программах только такого типа не построить программного обеспечения, которое способно бесперебойно функционировать неопределённо долго. Поэтому программное обеспечение физического мира, как можно допустить, построено по принципам обработчиков событий, т.е. по следующей логике: если соблюдены такие-то предусловия, то сделать вот что. А если соблюдены другие предусловия – сделать вон что. А если не соблюдены ни те, ни другие – ничего не делать, сохранять всё как есть! Отсюда вытекают два важных следствия.

Во-первых, из работы по предусловиям следует

1.4. Понятие квантового пульсатора. Масса.

Чтобы создать простейший цифровой объект на экране компьютерного монитора, нужно, с помощью простенькой программы, заставить какой-либо пиксель «мигать» с некоторой частотой, т.е. попеременно пребывать в двух состояниях – в одном из которых пиксель светится, а в другом не светится.

Аналогично, простейший объект «цифрового» физического мира мы называем квантовым пульсатором. Он представляется нам как нечто, попеременно пребывающее в двух разных состояниях, которые циклически сменяют друг друга с характерной частотой – этот процесс напрямую задаёт соответствующая программа, которая формирует квантовый пульсатор в физическом мире. Что представляют собой два состояния квантового пульсатора? Мы можем уподобить их логической единице и логическому нолю в цифровых устройствах, основанных на двоичной логике. Квантовый пульсатор выражает собой, в чистом виде, идею бытия во времени: циклическая смена двух состояний, о которой идёт речь, представляет собой неопределённо долгое движение в его простейшей форме, отнюдь не подразумевающей перемещения в пространстве.

Квантовый пульсатор пребывает в бытии, пока продолжается цепочка циклических смен его двух состояний: тик-так, тик-так, и т.д. Если квантовый пульсатор «зависает» в состоянии «тик» - он выпадает из бытия. Если он «зависает» в состоянии «так» - он тоже выпадает из бытия!

То, что квантовый пульсатор является простейшим объектом физического мира, т.е. элементарной частицей вещества, означает, что вещество не делимо до бесконечности. Электрон, будучи квантовым пульсатором, не состоит ни из каких кварков – которые являются фантазиями теоретиков. На квантовом пульсаторе происходит качественный переход: с физического уровня реальности на программный.

Как и любая форма движения, квантовые пульсации обладают энергией. Однако, квантовый пульсатор принципиально отличается от классического осциллятора. Классические колебания происходят «по синусоиде», и их энергия зависит от двух физических параметров – от частоты и амплитуды – значения которых могут изменяться. У квантовых же пульсаций, очевидно, амплитуда не может изменяться – т.е. она не может являться параметром, от которого зависит энергия квантовых пульсаций. Единственный параметр, от которого зависит энергия

1.5. Непригодность концепции относительных скоростей для описания реалий физического мира.

«Скорости движения тел относительны, и нельзя сказать однозначно, кто относительно кого движется, ибо если тело А движется относительно тела В, то и тело В, в свою очередь, движется относительно тела А…»

Эти умозаключения, насаждавшиеся нам ещё со школьной скамьи, выглядят безупречными с формально-логической точки зрения. Но, с физической точки зрения, они сгодились бы лишь для нереального мира, в котором отсутствуют ускорения. Неспроста Эйнштейн поучал, что СТО справедлива лишь для систем отсчёта (СО), «движущихся друг относительно друга прямолинейно и равномерно» [Э1] – впрочем, ни одной такой практической системы отсчёта он не указал. До сих пор никакого прогресса в этом вопросе не наблюдается. Не смешно ли, что, на протяжении более сотни лет, для базовой теории официальной физики не оговорена практическая область применимости?

А причина этой анекдотической ситуации весьма проста: в реальном мире, из-за физических взаимодействий, ускорения тел неизбежны. И тогда, попирая формальную логику, движение обретает однозначный характер: Земля обращается вокруг Солнца, камешек падает на Землю, и т.д. Например, однозначность кинематики при падении камешка на Землю – т.е., нефизичность ситуации, при которой Земля падает на камешек – имеет подтверждение на основе закона сохранения энергии. Действительно, если при соударении камешка с Землёй скорость соударения составляет

V

, то кинетическая энергия, которая может быть превращена в другие формы, составляет при этом половину произведения квадрата скорости

V

на массу камешка, но уж никак не на массу Земли. Значит, эту скорость набрал именно камешек, т.е. названный случай адекватно описывается в СО, связанной с Землёй. Но такой поворот дела не устраивал релятивистов. Чтобы спасти концепцию относительных скоростей, они договорились до того, что, для названного случая, связанная с камешком СО, якобы, ничуть не хуже, чем связанная с Землёй. Правда, в СО, связанной с камешком, Земля движется с ускорением

g

=9.8 м/с

2

и, набирая скорость движения

Более того, если вспомнить, что реальные превращения энергии должны происходить однозначно (

Кстати, однозначность приращений кинетической энергии пробного тела, в соответствии с приращениями его «истинной» скорости, была бы весьма проблематична, если тело притягивалось бы сразу к нескольким другим телам и, соответственно, приобретало бы ускорение свободного падения сразу к нескольким притягивающим центрам – как того требует закон всемирного тяготения. Например, если астероид испытывал бы тяготение и к Солнцу, и к планетам, то какова «истинная» скорость астероида, приращения которой определяют приращения его кинетической энергии? Вопрос нетривиальный. И, чтобы с ним не мучиться, гораздо проще разграничить области действия тяготения Солнца и планет в пространстве – так, чтобы пробное тело, где бы оно ни находилось, всегда тяготело лишь к какому-нибудь одному притягивающему центру. Для этого нужно обеспечить, чтобы области действия тяготения планет не пересекались друг с другом, и чтобы в каждой области планетарного тяготения было «отключено» солнечное тяготение. При такой организации тяготения, т.е. по принципу его унитарного действия (

Раздел 2. ОРГАНИЗАЦИЯ ТЯГОТЕНИЯ В «ЦИФРОВОМ» МИРЕ

2.1. Вы полагаете, что тяготение порождается массами?

Закон всемирного тяготения, как его сформулировал Ньютон, имел чисто постулативный характер. На основе наблюдений за движением небесных тел и за падением малых тел на Землю декларировалось, что любые две массочки во Вселенной притягиваются друг к другу с силой, равной

, (2.1.1)

где

G

- гравитационная постоянная,

m

1

и

m

2

- притягивающие друг друга массочки,

R

- расстояние между ними. Мало кто знает: из ускорений свободного падения к большим космическим телам – к Солнцу и планетам – определяются лишь произведения гравитационной постоянной

G

на массы этих тел, но сами эти массы отнюдь не определяются. Если принятое значение

G

было бы, скажем, в два раза больше, а принятые массы Солнца и планет были бы в два раза меньше (или наоборот) – то это никак не отразилось бы на результатах теоретического анализа движения тел в Солнечной системе. Т.е., принятые значения масс Солнца и планет продиктованы принятым значением гравитационной постоянной. А совпадают ли эти принятые значения масс с их истинными значениями, соответствующими количеству вещества в Солнце и планетах – науке это неизвестно до сих пор.

С чего же Ньютон влепил в формулу (2.1.1) произведение масс? – это на его совести. Но стало так: больше масса – сильнее притяжение к ней, меньше масса – слабее притяжение к ней, совсем нет массы – совсем нет притяжения к ней… Значит, чем порождается это притяжение? Конечно, массой – это же чисто математически ясно!

Но физически-то это было совсем не ясно. Чем обусловлено взаимное притяжение массивных тел – Ньютон не пояснил. Всё, что он сказал по этому поводу – это что массивные тела действуют друг на друга на расстоянии через некоторого посредника. Но пускаться в рассуждения о природе этого посредника означало бы прибегать к гипотезам – а гипотез, как полагал Ньютон, он «не измышлял».

2.2. Как Кавендиш и его последователи получали «притяжение» между лабораторными болванками.

Считается, что первый эксперимент, который доказал наличие гравитационного притяжения между лабораторными болванками – это знаменитый опыт Кавендиша (1798 г.). Казалось бы, ввиду исключительной важности этого опыта, его технические и методические подробности должны быть легко доступны. Учитесь, мол, студенты – как ставить фундаментальные эксперименты! Но не тут-то было. Студентам скармливают до неприличия адаптированную версию. Дескать, Кавендиш использовал крутильные весы: это горизонтальное коромысло с грузиками на концах, подвешенное за свой центр на тонкой упругой струне. Оно может поворачиваться в горизонтальной плоскости, закручивая упругий подвес. Кавендиш, якобы приблизил к грузикам коромысла пару болванок – с противоположных сторон – и коромысло повернулось на небольшой угол, при котором момент сил гравитационного притяжения грузиков к болванкам уравновесился упругой реакцией подвеса на закручивание. Вот и всё, ребята! Усвоили? Молодцы! Всем – по пять баллов! А подробностями вы не заморачивайтесь!

Но ведь это странно, чёрт возьми! Даже в специализированных изданиях, вроде [С1], подробности опыта Кавендиша не излагаются! Счастье, что нам удалось до них добраться в книге по истории физики [Г1], где дан перевод первоисточника – труда самого Кавендиша. Это – дивный сон какой-то. Методика, которую использовал Кавендиш, наглядно показывает, что гравитационным притяжением болванок там и не пахло!

Смотрите: крутильные весы Кавендиша – это высокочувствительная система, которая совершает долгопериодические и высокодобротные свободные колебания. Их трудно успокоить. Поэтому идея опыта заключалась в следующем: после перемещения болванок из дальней «непритягивающей» позиции в ближнюю «притягивающую», коромысло должно было продолжить свои колебания – довернувшись так, чтобы средние положения грузиков приблизились к болванкам.

И как же эта идея реализовалась? Да уж пришлось попыхтеть! Исходное положение: коромысло колеблется, а болванки находятся в дальней, «непритягивающей» позиции. Если ожидается, что, в результате их перемещения в ближнюю позицию, коромысло довернётся к новому среднему положению колебаний, то когда следует перемещать болванки, чтобы этот доворот коромысла проявился в наиболее чистом виде? Конечно же, когда коромысло проходит нынешнее среднее положение и движется в сторону ожидаемого доворота. Именно так и делалось. И – о, чудо! – коромысло начинало доворот. Казалось бы – дождись, когда выявится новое среднее положение, и дело в шляпе! Ан нет. Вот что писал Кавендиш:

Есть основания полагать, что «секрет успеха» Кавендиша был связан с микровибрациями, под воздействием которых изменялись параметры крутильных весов, так что весы изменяли своё поведение. Это изменение заключается в следующем. Пусть, при прохождении коромыслом среднего положения, начинаются микровибрации – например, у кронштейна, к которому прикреплён подвес коромысла. Опыт применения вибраций в технике [Б1] показывает, что под действием микровибраций эффективная жёсткость подвеса должна уменьшиться: струна как бы размягчится. И, значит, коромысло отклонится от среднего положения на существенно большую величину, чем при свободном отклонении без микровибраций. Причём, если это увеличенное отклонение не превысит некоторую критическую величину, то будет возможен ещё один интересный эффект. А именно: если микровибрации прекратятся до того, как коромысло достигнет максимального отклонения, то возобновятся свободные колебания с прежней амплитудой, но со смещённым средним положением. Более того, этот эффект будет обратим: новым подходящим добавлением микровибраций можно будет вернуть колебания коромысла к их прежнему среднему положению. Таким образом, поведение крутильных весов у Кавендиша вполне могло быть обусловлено всего лишь подходящими добавлениями микровибраций к крутильным колебаниям коромысла.

2.3. О чём говорит нам форма геоида.

Если бы Земля была однородным шаром, то, согласно закону всемирного тяготения, гравитационная сила, действующая на пробное тело вблизи поверхности Земли, зависела бы лишь от расстояния до её центра. Но Земля является сплюснутым эллипсоидом, имея так называемую «экваториальную выпуклость». Экваториальный радиус Земли равен приблизительно 6378.2 км, а полярный – 6356.8 км [А1]. Из-за одного того, что экваториальный радиус Земли больше полярного, гравитационная сила на экваторе должна быть несколько меньше, чем на полюсе. Причём, считается, что форма геоида является гидродинамически равновесной, т.е. что экваториальная выпуклость образовалась не без помощи центробежных сил, обусловленных собственным вращением Земли. Если найти приращение Δ

R

экваториального радиуса из условия, что результирующее уменьшение гравитационного ускорения на экваторе равно центробежному ускорению на экваторе, то для Δ

R

мы получим величину 11 км [Г3]. Заметим, что если земной шар превращается в сплюснутый эллипсоид при сохранении своего объёма, то, в согласии с формулой для объёма эллипсоида, увеличение экваториального радиуса на 11 км вызовет уменьшение полярного радиуса на те же 11 км. Итоговая разность составит 22 км, т.е. величину, близкую к фактической. Значит, модель гидродинамически равновесной формы геоида очень похожа на правду.

А теперь обратим внимание на то, что в расчётах мы не учитывали гравитационное действие вещества, находящегося в объёме экваториальной выпуклости – это действие, имей оно место, было бы отнюдь не одинаково при гравиметрических измерениях на экваторе и на полюсе. При гравиметрических измерениях на полюсе, действие всей экваториальной выпуклости было бы на порядок меньше, чем действие небольшой характерной части экваториальной выпуклости, прилегающей к точке проведения измерений на экваторе. Поэтому, из-за наличия экваториальной выпуклости, сила тяжести на экваторе была бы дополнительно увеличена по сравнению с силой тяжести на полюсе – и, значит, равновесное увеличение экваториального радиуса Δ

Таким образом, если экваториальная выпуклость обладала бы притягивающим действием, то гидродинамически равновесная форма геоида заметно отличалась бы от фактической. Но эти заметные отличия не наблюдаются. Отсюда мы делаем вывод: сотни триллионов тонн вещества экваториальной выпуклости Земли не обладают притягивающим действием.

Этот поразительный, «лежащий на поверхности» вывод до сих пор никто не оспорил. Разве что баллистики, которые рассчитывают движение искусственных спутников Земли, уверяли нас, что они учитывают, в своих расчётах, гравитационное действие экваториальной выпуклости. Ну, что тут поделаешь. Мы-то знаем, что при оптимизации многих параметров именно это и делают: учитывают несуществующие эффекты. Всё нормально!

2.4. Оглушительные результаты гравиметрических измерений.

Поверхностные массы Земли распределены неоднородно. Там есть мощные горные массивы, с плотностью пород около трёх тонн на кубометр. Есть океаны, в которых плотность воды составляет всего тонну на кубометр – даже на глубине в 11 километров. Есть долины, лежащие ниже уровня моря – в которых плотность вещества равна плотности воздуха. По логике закона всемирного тяготения, эти неоднородности распределения масс должны действовать на гравиметрические инструменты.

Простейшим гравиметрическим инструментом является отвес – успокоившись, он ориентирован вдоль местной вертикали. Издавна предпринимались попытки обнаружить уклонения отвеса, обусловленные притяжением, например, мощных горных массивов. Только роль отвеса здесь играл, конечно, не простой грузик на ниточке – ибо как можно знать, куда и насколько он отклонён? А использовался метод сравнения геодезических координат пункта измерений (получаемых, например, с помощью триангуляции) и его же координат, получаемых из астрономических наблюдений. Лишь во втором из этих методов используется привязка к местной вертикали, которая реализуется, например, с помощью ртутного горизонта у телескопа. Таким образом, по разнице координат пункта, полученных названными двумя методами, можно судить об уклонении местной вертикали.

Так вот, результирующие уклонения в большинстве случаев оказались гораздо меньше тех, которые ожидались из-за действия горных массивов. Во многих учебниках по гравиметрии (см., например, [Ц1,Ш1]) упоминаются измерения, которые в середине 19-го века провели англичане южнее Гималаев. Там ожидались рекордные уклонения, ведь с севера находился самый мощный горный массив Земли, а с юга – Индийский океан. Но обнаруженные уклонения оказались почти нулевыми. Аналогичное поведение отвеса обнаруживается и вблизи морской береговой линии – вопреки ожиданиям того, что суша, более плотная, чем морская вода, будет притягивать отвес сильнее. Для объяснения подобных чудес учёные приняли гипотезу об изостазии. Согласно этой гипотезе, действие неоднородностей поверхностных масс скомпенсировано действием неоднородностей противоположного знака, находящихся на некоторой глубине. Т.е., под поверхностными плотными породами должны находиться рыхлые, и наоборот. Причём, эти верхние и нижние неоднородности должны, совместными усилиями, повсеместно обнулять действие на отвес – как будто никаких неоднородностей нет вовсе.

Знаете, когда читатели наших статей доходили до мест про изостазию, то они, не веря возможности такого лепета в современной науке, кидались, например, в Википедию – и убеждались, что всё так и есть. И – как они выражались – «от хохота падали пацтул». Ну, действительно: чем глубже океан, тем мощнее плотные компенсирующие залежи под его дном. А чем выше горы, тем на всё более рыхлом фундаменте они красуются. Причём, всё – тютелька в тютельку! Даже детям смешно! Но дети ещё не знают, что концепция изостазии прямо противоречит реалиям динамики земной коры [М1] – а то они смеялись бы ещё громче.

Заметим, что уклонения отвеса свидетельствуют о горизонтальных компонентах местного вектора силы тяжести. Вертикальная же его компонента определяется с помощью гравиметров. С гравиметрами творятся те же самые чудеса, что и с отвесами. Но измерений с гравиметрами – очень много. Поэтому, чтобы народ не смешить, специалисты нагромоздили терминологические и методологические дебри, сквозь которые трудно продраться непосвящённому.

2.5. Где же притягивающее действие у малых тел Солнечной системы?

В Солнечной системе собственное тяготение с полной очевидностью имеется у Солнца, планет и Луны; а также, если судить по наличию атмосферы, у Титана. Что касается остальных спутников планет, то мы обнаруживаем следующее.

Во-первых, даже в случаях самых крупных спутников (в том числе и Титана) не обнаружена динамическая реакция их планет – которые, в согласии с законом всемирного тяготения, должны обращаться вокруг общего со спутником центра масс.

Во-вторых, о тяготении спутников планет свидетельствовало бы наличие у них атмосфер. Но, за исключением Титана, явных признаков атмосфер ни у кого из них не обнаружено.

В-третьих, ни у кого из шести десятков известных на сегодня спутников планет не обнаружено ни одного собственного спутничка. В свете теории вероятностей, такое положение вещей выглядит довольно-таки странным.

В-четвёртых, особого упоминания заслуживают т.н. динамические определения масс спутников, основанные на аксиоме о том, что спутники одной планеты непременно возмущают движение друг друга. Если в действительности спутники не притягивают друг друга, то динамические определения их масс являются попытками решения некорректно поставленной задачи. И признаки этого – действительно налицо: результаты применения этой методики оказываются расплывчатыми и неоднозначными. Вот комментарии определения де Ситтером масс четвёрки крупных спутников Юпитера, на основе полученного им периодического решения: «

Фактические орбиты спутников не соответствуют в точности периодическому решению, но могут быть получены из периодического решения вариацией координат и компонент скорости…

», и далее: «

…трудностью является медленная сходимость аналитического разложения по степеням масс

» [М2]. Тем не менее, значения масс, «

данные де Ситтером, следует считать наилучшими… Всякое уточнение этих значений потребовало бы построения новой теории, …потребовался бы также новый ряд наблюдений положений этих спутников

» [Д1]. Выбранные здесь «наиболее вероятные» значения масс спутников – из набора не повторяющихся значений – едва ли могут служить