Хаос и структура

Лосев Алексей Федорович

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число.

"Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

ДИАЛЕКТИЧЕСКИЕ ОСНОВЫ МАТЕМАТИКИ

ПРЕДИСЛОВИЕ

Выход в свет сочинения А. Ф. Лосева «Диалектические основы математики» представляет собою настолько необычное явление в нашей научно–философской литературе, что будет совершенно нелишним сделать ряд замечаний об этом авторе и об этом сочинении — в особенности со стороны лица, ближе других стоявшего и к тому и к другому.

Лосев — это одно из наиболее одиозных имен советской литературы и философии. Около 1930 г. в литературе была предпринята целая специальная кампания для расшифрования и разоблачения политической физиономии этого философа, имевшего к тому времени большое количество разнообразных философских сочинений и исследований. Эта кампания дала самые отрицательные результаты: Лосев оказался «небезызвестным вождем истинно русского идеализма»

[1]

. А. М. Горький даже покачал головой: «Профессор не успел умереть…»

[2]

Тем не менее политическое разоблачение совсем не хотело касаться научно–философской стороны сочинений Лосева; и она так и осталась без раскрытия. Это видно из того, что Лосев квалифицировался и как платоник, и как гегелианец, и как шеллингианец, и как гуссерлианец, и [как] бергсонианец, и как мистик, [и] как схоластик, и даже как эклектик.

Вместе с тем не нужно преувеличивать легкости этого анализа. Лосев — это одна из самых сложных фигур не только у нас, но и на Западе. В нем всегда уживалось столько разных тенденций, идей и методов, что написанное им только в ничтожной степени отражает его подлинную философскую жизнь. Можно сказать, что это ничтожные аккорды огромной философской симфонии, да и сам Лосев ощущает себя так, что он по–настоящему и не начинал писать философски. Вместе с тем это один из завершительных, резюмирующих умов. Такие философы всегда появлялись в конце великих эпох для того, чтобы привести в систему вековую работу мысли и создать инвентарь умирающей культуры, чтобы передать его новой культуре, только еще строящейся. Отсюда давнишняя любовь Лосева к античному неоплатонизму, к Николаю Кузанскому и к немецкому идеализму, та любовь, которую его враги всегда объясняли его мистицизмом, но которая по существу была наполовину любовь к системе, к инвентарю, к архитектонике, к подведению итогов. Стоит просмотреть хотя бы только оглавления его основных сочинений: тут везде на первом плане широчайшая система при невероятном развитии отдельных деталей. Даже в своей историко–философской работе Лосев часто только подводит итоги. Свою совершенно своеобразную концепцию античного платонизма, производящую на многих какое–то дикое впечатление, он сам выводит не больше как почти только результат и сводку вековой работы над платонизмом вообще.

Все эти наклонности философа делают его работу громоздкой, тяжелой, невыносимо грузной, увесистой — и это при самом дотошном конструировании мельчайших деталей. Нужно быть очень большим любителем философии, чтобы вникать в эти нескончаемые гирлянды мыслей, в этот, как выражается сам Лосев, балет категорий, во все эти тончайшие извивы логических тенденций духа. У этого «патентованного мракобеса» всегда была самая напряженная логическая мысль; и никто у нас так не обнажал мыслительный остов философии, никто так не был влюблен в чистую мысль, как он. И в течение многих лет у него не было иной радости, как бесконечно нагромождать одну категорию за другой, разлагая на них все самое сложное, самое глубокое, самое невыразимое.

ВВЕДЕНИЕ (ОБЩЕЕ РАЗДЕЛЕНИЕ НАУК О ЧИСЛЕ)

Всякая вещь и всякий предмет мысли есть прежде всего нечто само по себе сущее, а затем он есть нечто существующее в мысли и в отношении с прочим бытием. Разумеется, полная действительность вещи не та, которая свойственна ей в ее абстрактно–изолированном состоянии, но та, которая принадлежит ей в ее всестороннем взаимоотношении со всем прочим. Однако в целях уразумения действительности мы разделяем ее на отдельные, более или менее абстрактные моменты и изучаем их изолированно, с тем чтобы потом, во–первых, объединить их в целое, а, во–вторых, не просто объединить, а воссоздать ту их общую жизненную связь, из которой они были извлечены первоначально.

Отсюда, как бы мы ни думали, что идее принадлежит лишь абстрактное существование, и как бы ни верили в то, что только материальное существование есть полная действительность той или другой идеи, мы все же с самого начала поставлены перед абсолютной необходимостью понять число в его идее, в его сущности, в его первоначальном смысловом содержании. Потом мы узнаем, как эта идея претворяется в действительность, что сначала надо знать, что же такое само–то число по себе, в чем его сущность и чем оно существенно отличается от всего прочего. Так возникает основная антитеза идеи, смысла, существа числа и его явления, его осуществления, числа как отвлеченного понятия и числа как предметного явления,, антитеза чистой математики и математического естествознания.

Диалектическая философия знает, однако, ту сферу, где обе эти области совмещаются, с точки зрения которой обе они являются только абстракцией. Обычно думают, что чистая идея числа абстрактна, а вот число в природе, например т. н. законы природы, — это не есть абстракция, это есть сама действительность. С современной точки зрения такой взгляд на действительность, однако, совсем не может быть защищаем. Это для нас очень бедная, очень плоская действительность. Наша действительность— только историческая, и только в истории всякая идея достигает своей последней конкретности. Поэтому «число в природе» для нас никак не есть последняя реальность. Это условная, нетвердая и глубоко временная реальность, гораздо менее «реальная» для нас, чем т. н. природа. Не человек есть часть природы, а природа есть часть человека. Человек богаче, конкретнее, реальнее, живее и жизненнее природы. И только в истории, в человеке, идея и природа сливаются в живое единое; только тут, в человечестве, действительность становится конкретно ощутимой, творимой, жизненной. Поэтому историческая точка зрения на число — необходимое завершение учения о числе — и учения о смысле его чистой идеи, и учения о смысле его природно–материаль–ной осуществленное.

ОБЩАЯ ТЕОРИЯ ЧИСЛА

Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика— наука о числе—есть уже нечто вторичное по сравнению с самим числом. Если дана определенная диалектика числа, отсюда можно получить руководящие нити для диалектического анализа и самой математики как науки. Математика есть уже определенным образом скомбинированная теория и наука, а эта теория и наука предполагает, что уже есть определенный предмет для теоретизирования. И этот предмет надо вскрыть какими–то средствами, уже не просто математическими. Должно существовать определенное усмотрение предмета—той смысловой платформы, на которой будет разыгрываться математическая наука. И этой платформой может быть только вскрытие самого понятия числа, определение и философия его необходимых моментов — установок, без которых оно немыслимо. Этой до–теоретической задачей мы и должны заняться. Установивши прочно искомую платформу, т. е. получивши путем до–теоретического анализа то, что такое есть число в своем последнем существе, мы можем перейти к построению и науки о числе, именуемой как «математика», и выяснить диалектические основания этой последней как определенной системы.

I. ОТГРАНИЧЕНИЯ (УСТАНОВКА ЧИСЛОВОГО ПЕРВО–ПРИНЦИПА)

Что такое число в своем последнем существе?

Уже самая формулировка этого вопроса предполагает исключение всех вторичных и подсобных точек зрения. Прежде всего, можем ли мы сказать, что число есть что–нибудь объективное?

Всякому ясно, что число не есть что–нибудь объективное. В самом деле, число «пять» совершенно не зависит от того, имеется ли пять орехов или пять копеек. Определяя число «пять», мы не только можем исключить всякое рассуждение об орехах или деньгах, но мы обязательно должны это сделать, если не хотим затемнить предмет нашего определения и не хотим совсем потерять его из вида. Тем более мы должны отвлечься от всякой вещественной качественности, если хотим говорить о числе вообще. Итак, вот первая наша установка, наиболее ясная и четкая: число не есть что–нибудь в смысле вещественной качественности. Число относится к любой качественности и оформляет любую вещественность; и потому совершенно нет никакой нужды привлекать сюда что–нибудь вещественное или что–нибудь качественное.

Но может быть, число есть все–таки нечто объективное? Вещественная качественность есть только один из видов объективного бытия. Может быть, число есть какой–нибудь другой вид объективности? — И на этот вопрос приходится ответить отрицательно. Всякому ясно, что число относится также и ко всему субъективному. И в субъективном мире (например, в субъективных переживаниях) мы можем ориентироваться только тогда, когда здесь одно отлично от другого, т. е. когда можно считать. Почему же вдруг мы должны считать число обязательно чем–то объективным, а не субъективным или субъективным, а не объективным? Вполне очевидно и достоверно то, что число гораздо глубже самого разделения на субъект и объект, что оно применяется (и не может не быть применяемо) в областях бытия, в которых еще нет разделения на субъект или объект или уже нет. Рассматривая число «пять» в его существе, мы совершенно не замечаем в нем специально–объективного. Оно не более объективно, чем все другое. И потому вывод о том, что число не есть не только что–нибудь вещественно–качественное, но не есть и вообще что–нибудь объективное, должен быть элементарно очевиден и самодостоверен.

II. ФУНДАМЕНТАЛbНЫЙ АНАЛИЗ ЧИСЛА (ЧИСЛО КАК ЧИСТОЕ ПОНЯТИЕ)

Теперь мы вплотную подошли к фундаментальному анализу числа, расчистивши себе путь от всяких внешних и случайных привнесений. Единственным положительным достижением предыдущих рассуждений является следующий тезис.

Число есть результат актов чистого смыслового полагания.

Попробуем теперь дать анализ самого понятия числа, исходя из этой основной установки.

Естественнее всего этот анализ провести как анализ процесса счета, потому что всякое число есть прежде всего некая совокупность единиц, т. е. прежде всего некая счетность, сосчитанность. В этом анализе нами будут употребляться различные обыденные выражения, которые ни в каком случае не нужно понимать буквально. Так, будут употребляться местоимение «мы» и глаголы «полагать», «утверждать», «переходить» в зависимости от этого «мы» и пр. Понять это как описание психологических процессов в сознании автора — значит в корне исказить все построение. Запомним раз навсегда: если идет речь о смысле и значении, то этот смысл и значение ровно никому и ничему не принадлежит и в нем нет совершенно никакого отношения ни к субъекту (чьему–нибудь или ничьему), ни к объекту (если, конечно, это не есть смысл какого–нибудь субъекта или объекта, но и в этом случае смысл какой–нибудь объективной вещи или субъективного переживания сам по себе опять–таки не есть ни нечто субъективное, ни нечто объективное). В порядке обыденно человеческой речи можно говорить: «возьмем», «допустим», «полагаем», «мы полагаем», «мысль полагает», «требует», «существует» и т. д. Все эти выражения нисколько не говорят о том, что я, автор этой книги, или вы, ее читатель, или вообще кто бы то ни был на свете высказывает здесь что–нибудь о своих переживаниях. Это все есть бытие самого смысла, которое не объективно и не субъективно уже по одному тому, что одинаково определяет собою и то и другое.

III. ОСНОВНЫЕ АКСИОМЫ ЧИСЛА (ЧИСЛО КАК СУЖДЕНИЕ)

Приступая к анализу основных аксиом числа, нельзя не упомянуть о главнейших предрассудках, до последнего времени господствующих в этой области. Их очень много, и мало–мальски обстоятельная критика их заняла бы слишком много места. Но наше сочинение не преследует ни исторических, ни полемических целей, и потому соответствующие указания могут быть только самыми краткими. Главным образом бросаются в глаза два обстоятельства, характерные почти для всех систем математической аксиоматики.

Во–первых, аксиоматика чаще всего преследует цели не чисто математические и даже не чисто логические. С аксиоматикой часто связывают, напр., гносеологические, если не прямо метафизические, цели и точки зрения. Одни стараются доказать, что наши аксиомы чисто опытного происхождения; другие уверяют, что их наличие, наоборот, указывает на априорное происхождение. Одни говорят, что аксиомам соответствует какая–то реальная предметность; другие, наоборот, — что это чистейшие фикции, о реальности которых нечего и ставить вопрос и которые функционируют как словесные знаки, совершенно условные и субъективные. Ясно, что все подобные суждения направлены к целям совсем не математическим и совсем не к чисто логическим. Эти рассуждения хотят протащить то или иное определенное (а часто и совсем неопределенное) мировоззрение и меньше всего стараются изъяснить смысл самих аксиом. Аксиоматику с такой точки зрения рассматривают, в сущности, только как пример для подтверждения и иллюстрации более общих, уже чисто мировоззрительных убеждений. Так можно рассматривать не только математическую аксиоматику, но все, что угодно, любую науку и.любое знание, любое представление или идею человеческого ума.

Наша точка зрения в области математической аксиоматики должна быть совершенно иная. Нас интересует сама аксиоматика, аксиомы сами по себе. Философию здесь мы понимаем как смысловое уяснение и разъяснение самого же исследуемого предмета. Сначала нужно ведь понять, что такое математические аксиомы, и уяснить себе, как мы к ним приходим, а уже потом заниматься вопросами об их функционировании в той или другой области (напр., в психике развивающегося человека). С этой точки зрения Кант, как сказано было выше, напр., в своем учении о времени и пространстве занимается вопросами не принципиальными и не теми, которые составляли бы существо вопроса. Кант не задается вопросом о том, что такое время или что такое пространство. Он, уже обладая определенным взглядом на то и другое, ставит вопрос о том, откуда происходит то и другое, из чувственного опыта или из априорных форм субъекта. А между тем, то понимание пространства и времени, которым оперирует Кант, отнюдь не является так уже безупречным и разносторонним. Это очень узкое и очень бедное ньютонианское понимание, которое отсутствовало раньше в течение целых тысячелетий и которое весьма условно и сомнительно и с нашей современной точки зрения.

Такое положение дела оказывается возможным потому, что вначале не подвергается никакому анализу самое–το пространство и время, а ставятся вопросы, уже предполагающие определенное их понимание и указывающие на их судьбу уже в какой–нибудь инобытийной, в сравнении с ними самими, сфере. Можно иметь какие угодно интуиции времени и пространства, и можно как угодно решать вопрос об их реальности: это два совершенно разные вопроса. Решивши один из них, мы еще ничего не сказали для решения другого вопроса. А гносеологи и метафизики думают, что эмпиризм или априоризм уже сами по себе способны решить вопрос о существе [дела ].

IV. ФУНКЦИЯ И СОСЕДНИЕ КАТЕГОРИИ (ЧИСЛО КАК СУЖДЕНИЕ, УМОЗАКЛЮЧЕНИЕ, ДОКАЗАТЕЛbСТВО И ВЫРАЖЕНИЕ)

В предыдущем мы рассмотрели число как перво–прин–цип (отграничивши его от всего, что не есть число), число как принцип, или как понятие (раскрывши его диалектическую структуру), и число как суждение (установивши все основоположения, вытекающие из его структуры как категориальной). Из общей логики, да также из элементарного рассуждения мы знаем, однако, что суждение — отнюдь не последняя логическая форма, что дальше, в порядке усложнения, следует т. н. умозаключение, а после этого умозаключения еще по крайней мере одна структура, это доказательство — индуктивное, дедуктивное и синтетическое. Так как мы преследуем цели логической системы, то невозможно обойти молчанием число как умозаключение и число [как] доказательство.

[1 ]. Здесь, однако, полезно вспомнить первые общедиалектические категории, которые являлись и еще много раз будут являться для нас руководящей нитью для нашей системы. Именно, припомним, что бытие, истекающее из перво–бытия и противостоящее инобытию, синтезируется с ним в становление, а становление, противополагаясь и синтезируясь со своим собственным инобытием, порождает ставшее или наличное бытие, факт и в дальнейшем — выражение, энергийно–смысловое выражение. Эта элементарная диалектическая структура должна быть проведена и в отношении всего понятия числа еще до перехода к конкретно–математическим наукам. До сих пор, как сказано, мы разбирали только три первых момента этой структуры— перво–принцип, понятие, и суждение. Что же такое тут будет умозаключение, если его понимать как переход от смыслового становления к смысловому ставшему? Здесь нужны, однако, предварительные разъяснения и условия.

Чем, в сущности, занималась аксиоматика и что такое аксиома? До сих пор мы попросту говорили, что числу, как суждению, соответствует аксиома. Сейчас же этот вопрос необходимо расчленить, так как иначе не будет понятен переход к умозаключению.

Именно, суждение есть, как мы знаем, положенное понятие. Положить, или утвердить, — это значит обвести границей, определить. Строго говоря, в том, что мы до сих пор называли суждением, самым важным был именно этот момент определения. Аксиома, строго говоря, и есть не столько суждение вообще, сколько именно определение. Ведь бытие и инобытие, синтезируясь в становление, дают еще более ранний синтез, т. е. предшествующий становлению и являющийся его предусловием, это сама граница, определенность, определенное бытие. Мы знаем, что тот и другой синтез могут выдвигаться по мере надобности. Так вот, говоря о суждении, дедуцируя аксиоматику, мы еще не имели нужды в том расчленении и могли говорить о суждении, не обращая особенного внимания на то, есть ли это действительно суждение вообще или это специально определение.

О МЕТОДЕ БЕСКОНЕЧНО-МАЛЫХ В ЛОГИКЕ

ПРЕДИСЛОВИЕ

Настоящая работа имеет своею целью дать маленькое, но самостоятельное исследование одного из самых важных вопросов марксистско–ленинской теории, именно вопроса о текучем, подвижном, становящемся характере мышления, который вытекает как из того обстоятельства, что мышление есть отражение подвижного бытия и вечно становящейся материи, так и вследствие необходимости рассматривать все существующее диалектически. Мы умеем рассматривать природу и мир как вечно подвижные; но подвижность и текучесть мышления очень часто остается у нас только на бумаге, и, приступая к логике, т. е. к науке о мышлении, мы очень часто оказываемся в цепях самой доморощенной метафизики и рассматриваем понятия как неподвижные и абсолютно непроницаемые субстанции. Классики марксизма–ленинизма много сделали для того, чтобы приучить нас к текучему и становящемуся характеру понятия, суждения и умозаключения; и метод бесконечно–малых наряду со многими другими точками зрения играл у них в этом отношении далеко не последнюю роль. Конкретизировать и развивать соответствующие указания классиков марксизма–ленинизма и является целью настоящей работы.

К сожалению, как ни ценна сама математика, ее материалы в логическом отношении являются совершенно неразработанными у самих математиков, страдающих почти всегда слишком большим формализмом, техницизмом и даже номинализмом. Им, напр., часто кажется, что они витают в каком–то неприступном идеальном царстве мысли и что их построения ровно ничему не соответствуют объективному. Даже и прямое значение математики в механике и технике очень часто понимается вполне махистски, т. е. так, что математика продолжает быть у них даже и здесь чисто априорной дисциплиной, как будто не существует никакой материи или она не нужна для этих математических построений. Покамест в математике не разрушен этот формализм, фикционизм и номинализм, нечего и думать принимать без критики то, что говорят сами математики. Приходится применять их методы на основе их конкретной разработки в самой математике, но никак не в силу формулировок и интерпретаций их у самих математиков. У математиков бывает часто даже прямое презрение к другим наукам, с их точки зрения недостаточно точным, и какое–то бахвальство своим особым, привилегированным положением среди прочих научных работников, наплевизм на огромные усилия человеческого ума понимать мир не только математически. В основе такого сепаратизма лежит наивное убеждение в том, будто бы математические истины никак не связаны с человеческим опытом и что они не уходят своими корнями в эмпирически наблюдаемую объективную реальность.

Предлагаемая работа имеет своею целью использовать метод бесконечно–малых для философии, но она имеет также своею целью опровержение очень частого у математиков сепаратизма, отрицающего связь математического анализа с конкретным человеческим опытом. Энгельс пишет: «Из всех теоретических успехов знания вряд ли какой оценивается так высоко, считаясь величайшим торжеством человеческого духа, как открытие исчисления бесконечно–малых во второй половине XVII в. Здесь, кажется, скорее чем где бы то ни было мы имеем перед собой чистое и исключительное деяние человеческого духа. Тайна, окружающая еще и в наше время применяемые в исчислении бесконечно–малых величин дифференциалы и бесконечные разного порядка, является лучшим доказательством того, что и поныне еще воображают, будто здесь имеют дело с чистыми, свободными творениями и плодами воображения человеческого ума, для которых нет ничего соответственного в объективном мире. Между тем справедливо как раз обратное. Мы встречаем для всех этих мнимых величин прообразы в природе» (Анти–Дюринг. 1938.275). Эти указываемые Энгельсом прообразы математического анализа в природе мы приводим в § 13, где мы обращаем внимание также и на то, что вся реальная и повседневная жизнь человека, все его поведение и вся его работа состоит из процессов постоянного дифференцирования и интегрирования.

Только очень низкой культурой логического мышления приходится объяснять то, что в традиционной логике до сих пор отсутствует метод бесконечно–малых и даже самое понятие бесконечности. Здесь все еще мерещится старая метафизика, и многие даже весьма искренне настроенные марксисты боятся употреблять этот термин в логике, несмотря на то что в соседней с логикой науке, в математике, этот метод и это понятие не только заняло твердую позицию несколько веков назад, но без этого немыслимо даже и современное развитие техники. Каждый средний студент математических, физических, разного рода технических факультетов оперирует бесконечностями не хуже того, как школьник оперирует таблицей умножения, и только одна логика, призванная к тому же отразить развитие науки, все еще боится даже заикнуться о понятии бесконечного и уж тем более страшится всяких методов, связанных с операциями над бесконечными величинами. Большой вред в этом отношении нанесли опять–таки сами же математики, и именно своим отгораживанием математического понятия бесконечности от всякого другого ее понятия и своим отгораживанием этого понятия от прообразов и аналогий с реальной действительностью.

В этом отношении мы позволим себе опять–таки процитировать Энгельса. Он пишет: «…лишь только математика укроется в свою неприступную твердыню абстракции, так называемую чистую математику, все эти аналогии забываются; бесконечность становится чем–то совершенно таинственным, и тот способ, каким ею пользуются в анализе, начинает казаться чем–то совершенно непонятным, противоречащим всякому опыту и рассудку. Глупости и нелепости, которыми математики не столько объясняли, сколько извиняли этот свой метод, приводящий странным образом всегда к правильным результатам, превосходит худшие, реальные и мнимые фантазии хотя бы гегелевской натурфилософии, о нелепостях которой математики не могут наговориться досыта. Они сами делают теперь— но в несравненно большем масштабе — то, в чем они упрекают Гегеля, именно доводят абстракции до крайности. Они забывают, что вся так называемая чистая математика занимается абстракциями, что все ее величины, строго говоря, мнимые величины и что все абстракции, доведенные до крайности, превращаются в бессмыслицу или в свою противоположность. Математическая бесконечность заимствована из действительности, хотя и бессознательным образом, и поэтому она может быть объяснена только из действительности, а не из самой себя, не из математической абстракции. Но если мы станем исследовать действительность с этой стороны, то мы найдем, как мы видели, те реальные отношения, из которых заимствованы эти математические понятия о бесконечности, и даже естественные аналогии математической трактовки этих отношений. А этим и объясняется все дело» (Анти–Дюринг. 278 сл.).

1. ВСТУПЛЕНИЕ

1. Невероятное отставание школьной логики от современного развития науки особенно проявляется в беспомощности перед математикой, в ее математической элементарности. Уже 300 лет прошло с тех пор, как естественные науки стали на путь изображения подвижной природы вместо фиксации разных ее окостеневших форм. Уже 200 лет проходит с тех пор, как на тот же путь стали и науки общественные. Уже 100 лет назад начала подниматься великая звезда марксизма с его теорией непрерывно–скачкообразного становления человеческого общества. Но учебники логики с поразительным единодушием продолжают—вот уже до середины XX в. — ограничиваться элементарной таблицей умножения, демонстрируя собою чудовищный разрыв со всем научным сознанием передового человечества. Дело, конечно, вовсе не в том, что в логике не должно быть никакой элементарной ступени, подобно начальной арифметике в математике. Такая элементарная логика, которая состоит из «неподвижных категорий, представляющих собою как бы низшую математику логики, ее применение в условиях домашнего обихода» (Энгельс. Диал. прир. 1941. 163), конечно, должна иметь свое твердое место; и «никто не станет заключать, что, например, формальная логика — бессмыслица» (там же, 193). Но речь все–таки идет об ограничении этой элементарной (слишком уж элементарной) логики; и речь идет о том, чтобы высшая математика все–таки не сводилась на начальную арифметику.

Как это сделать? Решать такой вопрос в целом, разумеется, было бы наивно в нашей небольшой работе. Но обратить внимание работников теоретической мысли на один пункт, весьма важный для решения этого вопроса, — это сделать можно и в небольшой работе.

2. Именно, мы предлагаем учесть тот огромный вклад, который был сделан в свое время в человеческую мысль математическим анализом, или исчислением бесконечно–малых, или, как говорят, инфинитезимальным методом. Не говоря уже о колоссальных приложениях этого метода в ряде точных наук, и теоретических, и технических, высокая оценка этого метода базируется у нас на марксистском отношении к этому методу, с большой силой выраженном у Энгельса. «Из всех теоретических успехов знания вряд ли какой–нибудь считается столь высоким триумфом человеческого духа, как изобретение исчисления бесконечно–малых во второй половине XVII века. Если уж где–нибудь мы имеем перед собою чистое и исключительное деяние человеческого духа, то именно здесь» (Диал. прир. 216). «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы движения» (220). Однако если мышление, по Энгельсу, есть отражение природы (168) и если «движение, рассматриваемое в самом общем смысле слова, т. е. понимаемое как форма бытия материи, как внутренне присущий материи атрибут, обнимает собою все происходящие во вселенной изменения и процессы, начиная от простого перемещения и кончая мышлением» (46), то спрашивается: как же можно было бы игнорировать метод бесконечно–малых, изображающий движение как раз со стороны его сплошности и непрерывности, в мышлении, в логике, в науке о материальном движении на самой высокой ступени его развития? Совершенно очевидно, что с точки зрения учения Энгельса метод бесконечно–малых в логике по меньшей мере допустим и оправдан, если только не прямо необходим.

Поэтому имеет смысл совершить эту попытку, если мы хотим обрисовать логическую природу мышления именно как формы движения.

3. Мы вполне учитываем возможность всякого рода возражений, которые поднимутся против введения метода бесконечно–малых в логику. Возражения против этого метода были и в самой математике. Всегда находилось достаточное количество недалеких голов, пугающихся всего бесконечного. И даже еще теперь, когда голое отрицание этого метода было бы обскурантизмом, все еще встречаются специалисты, думающие свести анализ на конечные операции. Против такого рода узколобых критиков Энгельс прекрасно пишет следующее (162): «До конца прошлого столетия и даже до 1830 г. естествоиспытатели более или менее обходились при помощи старой метафизики, ибо действительная наука не выходила еще за пределы механики, земной и космической. Однако известное замешательство вызвала уже высшая математика, которая рассматривает вечную истину низшей математики как преодоленную точку зрения, часто утверждает нечто противоположное ей и выставляет положения, кажущиеся представителю низшей математики просто бессмыслицей. Здесь затвердевшие категории расплавились, математика вступила в такую область, где даже столь простые отношения, как отношения абстрактного количества, дурная бесконечность, приняли совершенно диалектический вид и заставили математиков стихийно и против их воли стать диалектиками. Нет ничего комичнее, чем жалкие уловки, увертки и вынужденные приемы, к которым прибегают математики, чтобы разрешить это противоречие, примирить между собою высшую и низшую математику, уяснить себе, что то, что у них получилось в виде неоспоримого результата, не представляет собою чистой бессмыслицы, — и вообще рационально объяснить исходный пункт, метод и результаты математики бесконечного».

2. ВЕЩb — АРГУМЕНТ И ОТРАЖЕНИЕ—ФУНКЦИЯ

Материализм может исходить только из подвижной материи как из чего–то независимого. И все, что есть помимо материи, есть, очевидно, только ее отражение, ее функция.

Уже один этот первый—и простейший — шаг по пути понимания мышления с точки зрения математического анализа имеет огромное значение. Сказать, что мышление есть функция материи, — это значит иметь большое достижение. Многим, особенно воспитанным на утонченном буржуазном логицизме, весьма претит наш «грубый» термин «отражение». Нас обвиняют за него в метафизике, в грубом онтологизме, в игнорировании чисто логической проблематики и т. д. Термин «функция» в этом отношении совершенно незаменим. Он берет из «отражения» как раз то, что нам надо. А тем не менее он совершенно обезоруживает всякого буржуазного гносеолога. Что можно против него сказать, если на нем построен целый ряд точных наук огромной важности? Кроме того, эта категория яснее и проще подвергается научному анализу. Если об отражении еще можно спрашивать, что оно такое, то в реальной значимости «функции» уже никто сомневаться не имеет никакого права; и речь может идти только о том, как это понятие проще определить.

Таково это первое—и, на наш взгляд, огромное—достижение математического метода в логике—это понимание мышления как функции от материальных вещей.

Обозначим материальную вещь через χ, понимая ее как то независимое переменное, от изменений которого будет зависеть все прочее. Этот χ принципиально неисчерпаем и бесконечен (вспомним ленинский стакан в знаменитой речи о профсоюзах). Этому χ соответствует адекватное существенное отражение, такое же неисчерпаемое и такое же бесконечное, как и сам х. Это существенное отражение, очевидно, является определенной функцией от аргумента х. Назовем ее у. Ясно, что человеческое знание, вообще говоря, есть некоторое отношение между этими χ и у. От изменения этого отношения между вещью и ее отражением зависит и степень, равно как и качество человеческого мышления и знания об этой вещи.

Итак, отражение вообще есть функция вещей материи; и поскольку мышление относится к сфере отражения, и само мышление тоже есть функция материи. Тут, однако, не надо сбиваться с толку этой точной терминологией и надо понимать ее только так, как она сама на это уполномочивает. Во–первых, если мы говорим, что мышление есть функция материи, то этим вовсе не говорим, что мышление есть функция какого–то одного переменного. Вещь вовсе не есть какое–нибудь одно переменное. Это—множество разнородных переменных, если не прямо бесконечное число разного рода переменных. Раз вещь бесконечна, то, значит, она состоит и из бесконечного количества переменных, развивающихся к тому же в самых разнообразных и часто противоположных направлениях. Мышление поэтому, выражаясь математическим языком, есть обязательно функция многих переменных, даже когда оно относится к какой–нибудь одной, строго определенной вещи. И если мы сказали только об χ, то это было сказано только для краткости и только условно. На самом же деле это и х

3. ИЗМЕНЕНИЯ ЭТИХ АРГУМЕНТА И ФУНКЦИИ И ОТНОШЕНИЕ МЕЖДУ ЭТИМИ ИЗМЕНЕНИЯМИ

1. Итак, мы имеем некую систему независимых переменных или, пусть скажем, некий аргумент дс, материальную вещь, и — функцию от этого, отражение и, стало быть, мышление, у. Будем теперь наблюдать, как меняется наш х.

Покамест мы имеем просто отношение у к х, это значит, что мы находимся вообще в области знания, ибо отношение существенного отражения к самой вещи есть не что иное, как именно рассмотрение вещи в свете этого отражения и этого отражения—в свете соответствующей материальной вещи. Это есть знание, и это есть мышление — наиболее полное и наиболее целостное. Познание ведь и есть не что иное, как известное отношение между отражением вещи и самой вещью. Но вот вещь меняется, и соответственно—меняется и ее существенное отражение. Что тут происходит с познанием и, следовательно, со знанием?

Вещи меняются, во–первых, непрерывно и, во–вторых, прерывно, скачкообразно. Для наших целей сейчас особенно важно непрерывное изменение, т. е. сплошное становление вещи. Остановимся на нем. Итак, χ непрерывно меняется. Так как у есть функция от χ, то, следовательно (для случая непрерывной функции), непрерывно меняется и у. X изменился на некоторую величину, у изменился тоже на некоторую величину (уже свою собственную). X изменился на бесконечно–малую величину, и у—тоже. Тут, между прочим, чрезвычайно важна эта идея бесконечно–малых изменений существенного отражения, а значит, и мышления. Конечно, мы очень часто и без этого возражаем против метафизики, против неподвижности вещей и мышления. Однако большею частью эти возражения остаются только на бумаге. Мышление меняется—кто же будет отрицать эту азбучную истину? Но это, конечно, не есть марксизм. Очень легко отделаться общей фразой и не ставить вопроса во всей глубине. А вся глубина этого вопроса заключается в том, что мышление меняется именно непрерывно, что оно есть сплошное становление, т. е. что все его элементы (напр., понятия или суждения)—переменные величины в смысле математического анализа, т. е. что эти изменения происходят здесь бесконечно–малыми приращениями. Только дифференциальное и интегральное исчисления и могут обосновать для нас эту подвижность и текучесть самих понятий, самих сущностей. То, что они прерывны, это знают все. Но то, что они в то же самое время еще и непрерывно становятся, это знает мало кто. И покамест эта цитадель метафизики не будет разрушена, нечего и думать идти за Лениным, когда он говорит, что «не только явления преходящи, подвижны, текучи, отделены лишь условными гранями, но и сущности вещей так же» (Филос. тет. 263), что «всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей, — вот в чем суть» (110), что понятия есть «учеты отдельных сторон движения, отдельных капель ( = «вещей»)», отдельных «струй», в то время как бытие есть «река и капли в этой реке» (144). Поэтому непрерывность, бесконечно–малое изменение всякого понятия, суждения, умозаключения и всего мышления в целом, заповеданное Лениным, должно быть зафиксировано нами во всей точности, именно с математической точностью.

2. Итак, χ меняется и у меняется. В каком же отношении окажется теперь наш аргумент д: и наша функция у в условиях своего непрерывного изменения, т. е. в условиях изменения на бесконечно–малые величины? Ясно, что это отношение будет уже не то, что раньше между χ и у как таковыми. И что же это за отношение? Если иметь в виду, что здесь речь идет о непрерывном изменении вещи, а непрерывное изменение вещи есть именно то, которое мы воспринимаем чувственно, и если принять во внимание, что как раз наша чувственность обладает существенным признаком в сравнении с мышлением, непрерывной и чисто непосредственной текучестью и становлением, то мы не ошибемся, если скажем, что отношение бесконечно–малых приращений наших функции и аргумента, т. е. отношение непрерывного становления соответствующего отражения и вещи, есть не что иное, как сфера самой обыкновенной человеческой чувственности, но взятой в том или ином пределе.

3. Чистая непосредственная чувственность, если она лишена абсолютно всякого оформления, есть некий неразличимый туман, некая сплошная иррациональность, реально даже не существующая в человеческом опыте, а являющаяся лишь некоторой абстракцией.

4. ЗНАЧЕНИЕ ТЕОРИИ ПРЕДЕЛОВ ДЛЯ ЛОГИКИ

1. Здесь перед нами также, по–нашему, огромный дар логике от математического анализа. Мы покамест оставим в стороне категорию производной в целом, ибо в дальнейшем ей посвящается у нас отдельный параграф. Но о категории предела, входящей в производную, необходимо сказать подробнее уже сейчас. Эта категория, как мы видим, привлечена у нас не больше и не меньше как для изображения логического отношения между мышлением и чувственностью.

Невозможно себе и представить все ухищрения ученых в вопросе о взаимоотношении мышления и чувственного представления. Можно сказать, вся история философии, особенно Нового времени, есть история разных теорий о взаимоотношении мышления и представления или, в дальнейшем, мышления и ощущения. И результат всех этих теорий довольно–таки плачевный. Это — априоризм и сенсуализм с бесконечными оттенками между ними. И это почти всегда подмена логической точки зрения разными натуралистическими исканиями, что из чего и как произошло. Но что бы и как бы из чего ни происходило, логическая значимость этим не определяется. Ньютон, Дарвин, Павлов — религиозные люди, а создавали материалистические системы. И наоборот, многие воспитанники духовных семинарий оказались у нас и материалистами, и революционерами. Пусть общее понятие «происходит» из чувственного опыта. Ну и что же из этого? Прежде всего, такое решение логической проблемы общего понятия не имеет никакой возможности ответить на критику Канта о том, что всякое отдельное чувственное восприятие пространственно–временной вещи уже предполагает априорные формы пространства и времени. А во–вторых, какое же это имеет отношение к логической природе мышления? А если известная теорема приснилась мне во сне в готовом виде, значит ли это, что данная теорема неверна?

Вместо всех этих жалких ignorationes elenchi

[203]

математический анализ дает нам точную и сильную, яркую картину именно логического отношения между понятием и представлением. Спросим себя, какой смысл имеет в науке чувственное представление? Не само же по себе, в самом деле, оно имеет тут значение. Ведь наука — это установление законов, нахождение общих соотношений, т.е. то самое, на что совершенно не способно чувственное представление. Хороша была бы физика, если бы она не шла дальше тех скоростей, которые можно уловить глазом! Не только о скорости света мы никогда не узнали бы и не могли бы о ней учить как о чем–то реальном; но мы вообще о скоростях больших <…> м [етра] в секунду не могли бы иметь никакого представления или должны были бы отрицать их реальность. Но если не само по себе имеет значение для логики чувственное представление, то какое же еще? Уже не такое ли, о котором говорят т. н. эмпирики, что отдельные чувственные представления сливаются в одно общее представление, т. е. такое значение, которое сводится к тому, что они бесследно гибнут и расплываются в мышлении? Однако тут мы, конечно, должны защитить чувственное представление от такого его оправдания. Чувственное представление вовсе не гибнет; оно нужно для науки, оно—орудие науки; без него нет и самой науки. Но в чем же тогда дело? В чем же тогда значимость, и именно логическая значимость, представления в сравнении с понятием?

2. Я не знаю более совершенного способа и сохранить для науки чувственное представление, и в то же время ограничить его в сравнении с научным понятием (так ограничить, как оно фактически ограничено в своем научном употреблении), кроме толкования понятия как предела и представления как переменной величины, стремящейся к пределу. Что чувственное представление с такой точки зрения является чем–то ограниченным, это ясно. Но вместо неясного термина «ограниченность» мы получаем тут яснейшую категорию из теории пределов, именно категорию переменной величины, стремящейся к пределу. Такая величина всегда приблизительна. Она никогда не достигает своего предела, но зато и может приближаться к нему с любой точностью. Таким образом, по самой природе своей она есть нечто становящееся. Переменная величина имеет предел, говорят математики, если разница между ней и ее пределом может стать меньше любой заданной величины, т.е. вечно стремится к нулю. Что этим чувственное представление буквально спасается для науки, это совершенно ясно. Вместо расплывчатою пятна неизвестно чего, вместо абсолютной текучести дряблого чувственного марева представление получает определенную закономерность, оно получает научный смысл, его уже нельзя просто отбросить, оно — настоящий фундамент науки. Но в то же время все его логическое значение держится, по нашей теории, только его пределом, т. е. понятием, общим, которое им управляет, как в математике предел управляет соответствующей ему переменной величиной. В этом пределе нет ровно ничего таинственного или сверхъестественного. Это—самая обыкновенная конечная величина. Но он безусловно дает закон для соответствующей переменной величины, точь–в–точь [как] в реальной и истинной науке: мы имели массу всяких чувственных представлений, но весь их смысл заключается только в том, чтобы мы добыли из них закон природы или общества, получили бы то общее, которое их осмысляет и для которого они являются материальной базой.

3. Имея все это в виду, попробуем дать более точное логическое раскрытие понятия предела. Способов такого раскрытия несколько, и тут возможно употребление самых разнообразных категорий. Предлагаемая нами конструкция отнюдь не единственная и, вероятно, не наилучшая, так как вопрос этот почти не обсуждается в логике; и дружная разработка его, конечно, тотчас же обнаружила бы и другие, более совершенные подходы. Однако за отсутствием исследований этого вопроса в философии попробуем дать тут некоторое логическое построение с единственной претензией — только на первое приближение к истине.