Расследование и предупреждение техногенных катастроф. Научный детектив

Петров Юрий Петрович

В книге рассказывается о знаменитых авариях и катастрофах, происходивших как в прошлом, так и в последние годы (таких как гибель подводной лодки "Курск", обрушение аквапарка "Трансвааль", катастрофы пассажирских самолетов и др.). Рассказано о методах расследования (и особенно — научного расследования) причин техногенных катастроф и о нелегкой борьбе за их предотвращение.

Предисловие

Человек всегда боялся природных катастроф — землетрясений, наводнений, бурь и ураганов. В последние десятилетия главной опасностью для человека стали аварии и катастрофы техногенные — т. е. порожденные техникой, окружающей человека.

Современная техника вездесуща, мощна и многообразна. Но тем страшнее последствия аварий, катастроф, причиной которых служат ошибки и неточности тех, кто создает современную технику, и тех, кто ее эксплуатирует.

В отличие от природных катастроф, в отличие от катастроф, порожденных землетрясениями, наводнениями и другими грозными природными явлениями, техногенные катастрофы предотвратимы. Они возникают только там, где человек, создающий и эксплуатирующий технику, делает ошибки. Этих ошибок вполне можно избежать, но жизнь показывает, что ошибки множатся и число жертв техногенных катастроф с каждым годом, с каждым новым десятилетием не уменьшается, а растет. И происходит это от того, что причины аварий и катастроф далеко не всегда тщательно и добросовестно расследуются, и слишком мало делается для их предотвращения. В результате жизнь современного человека, постоянно находящегося в контакте с окружающей его техникой, находится в серьезной опасности.

В предлагаемой вниманию читателя книге рассказывается об интересной и драматической истории расследования ряда знаменитых техногенных катастроф — как тех, что происходили в прошлом, так и тех, память о которых еще свежа. Будет рассказано как о расследованиях, проводимых правоохранительными органами, прокурорами и следователями, так и о научных расследованиях. Основной упор в книге сделан на научных расследованиях, поэтому данную книгу можно рассматривать как «научный детектив». Детективы всегда привлекают внимание читателей. Действительно, что может быть интереснее, чем следить за «дуэлью умов», за состязанием следователя («детектива») и преступника. Я надеюсь доказать, что и научное расследование может быть не менее интересным и захватывающим, а что касается значимости, то на сегодняшний день вероятность погибнуть от техногенной аварии или катастрофы во много раз больше, чем вероятность погибнуть от руки преступника или террориста. И эта вероятность будет все время возрастать, потому что у нас в России нет уважения к науке и все еще очень мало делается для предотвращения техногенных аварий. В книге будет рассказано о борьбе (и борьбе не всегда успешной) по предотвращению техногенных аварий и катастроф. Читатель увидит, что эта борьба очень не легка и далеко не всегда заканчивается успехом. А не всегда заканчивается успехом потому, что очень трудно преодолеть людскую косность, преодолеть неуважение к науке, проявившееся в последнее десятилетие в нашей стране, преодолеть косность и безразличие к своей и чужой жизни наших граждан, давно отвыкших от активной гражданской позиции. Да, многие десятилетия в нашей стране активная позиция была опасна, очень опасна. Сейчас опасности нет — а привычка осталась. Зная эту привычку, чиновники уверены в своей безнаказанности и не хотят — как будет показано в книге — исполнять свои обязанности по предотвращению техногенных катастроф.

Уважаемый читатель! Я уверен, что ты дорожишь своей жизнью и жизнью своих детей. Прочитав книгу, ты лучше узнаешь, какие опасности угрожают твоей и их жизням и как можно эти опасности предотвратить.

ЧАСТЬ I

§ 1. Катастрофа на Чернобыльской АЭС

Наиболее известной из техногенных (т. е. «порожденных техникой») аварий и катастроф является произошедшая в 1986 году знаменитая катастрофа на Чернобыльской атомной электростанции, расположенной недалеко от Киева. В результате целой серии ошибок персонала, эксплуатировавшего станцию, взорвался один из ее реакторов мощностью в миллион киловатт.

В результате взрыва и пожара в воздух было выброшено несколько десятков тонн высокорадиоактивных материалов, которые образовались в реакторе за время его работы. Часть этих материалов упала вблизи электростанции и сильно заразила и ее, и ее окрестности, а часть выброшенного материала распылилась в мельчайшую пыль и разнеслась ветрами на огромные расстояния. Уже через несколько дней радиация была обнаружена в Швеции и Норвегии, потом она вместе с атмосферными потоками пересекла Атлантический океан, достигла Гренландии, Канады и США. Затем радиоактивная пыль стала «вымываться» из атмосферы дождями и оседать на землю — оседать очень неравномерно. Образовались опасные «радиоактивные пятна» во многих областях Украины, Белоруссии и юга России. Население, проживавшее в этих «радиоактивных пятнах», стали переселять в более безопасные места. Огромный труд был затрачен на уменьшение уровня радиации вокруг атомной электростанции. Над разрушенным взрывом реактором был создан непроницаемый бетонный «саркофаг», зараженная радиацией земля вокруг атомной станции была снята и отвезена в отдаленные хранилища.

Всего над ликвидацией последствий Чернобыльской катастрофы работало 400 тысяч человек «ликвидаторов» — солдат и гражданских специалистов, призванных из запаса. Многие из них в ходе работы получили опасные дозы радиации и стали инвалидами, многие умерли. Точных и бесспорных цифр пострадавших и погибших нет до сих пор. Разные лица и организации называют разные цифры. И это не случайно.

Действительно, наиболее характерной чертой Чернобыльской катастрофы — как, впрочем, и всех других аварий и катастроф, происходивших в СССР, примерно до 1990 года была необычайная секретность. По законам СССР все сведения об авариях — и катастрофах являлись государственной тайной, и за разглашение ее можно было поплатиться многими годами тюрьмы.

Высшее руководство СССР вообще собиралось скрыть Чернобыльскую катастрофу и ничего о ней не говорить. И только необычайный масштаб катастрофы, а главное — перелетевшие границы СССР облака радиоактивной пыли, замеренные приборами чужих государств, заставили частично приоткрыть завесу секретности. Но полного, гласного, откровенного обсуждения не произошло. Часть важных сведений скрывалась, часть — преувеличивалась средствами массовой информации и порождала у населения страх, стресс и паническую боязнь радиации. Как потом было подсчитано, от стрессов и порожденных стрессами болезней умерло больше людей, чем непосредственно от радиации.

§ 2. Катастрофа аквапарка «Трансвааль»

14 февраля 2004 года Москва была потрясена ужасной катастрофой: обрушилась крыша аквапарка (водного парка) «Трансвааль». Погибло 27 человек, в том числе дети, 113 человек получили различные травмы.

Аквапарк «Трансвааль», расположенный на окраине Москвы, был одним из любимейших мест отдыха москвичей. Плавательные бассейны, различные аттракционы — водные горки, бассейны с искусственно созданными морскими волнами и т. п. — все располагало к здоровому и беззаботному отдыху. Само здание аквапарка было очень красиво. Крыша бассейна опиралась на целый ряд расположенных полукругом колонн, между которыми оставалось место для больших окон.

Поэтому даже в хмурую зимнюю пору в день 14 февраля 2004 года аквапарк был полон беззаботно веселящимися в воде взрослыми и детьми. И вдруг одна из колонн, на которые опиралась крыша большого бассейна, внезапно сломалась под ее тяжестью, а вслед за ней стали ломаться и другие колонны. Потерявшая опоры крыша рухнула прямо на головы беззаботно плавающих людей. Раздались ужасные крики раздавленных, погас свет, в кромешной тьме те, кто уцелел, пытались выбраться из-под рухнувших на них обломков. Затем прибыли спасатели, несколько часов разбирали завалы, спасали тех, кого еще было можно спасти. Потом наступило время окончательного горького подсчета. Вот этот подсчет: 27 погибших, 113 раненых. Среди погибших и раненых — дети.

Конечно, катастрофа такого масштаба не могла остаться без тщательного расследования, главная задача которого заключалась, разумеется, в том, чтобы предотвратить возможность повторения подобных трагедий — и в Москве, и в других местах. Ведь аквапарков много, строиться будет еще больше, а предотвратить возможные катастрофы можно лишь в том случае, если будет выяснена истинная причина того, что произошло 14 февраля 2004 года в аквапарке «Трансвааль». Если причина не будет выяснена, или — что еще хуже — будет названа фальшивая, не истинная причина, то останется возможность повторения аварий в аквапарках и в других новых зданиях и сооружениях, и ни один гражданин, входя в новое, недавно построенное и не типовое здание, не может быть уверен в том, что выйдет живым, не может быть уверен в безопасности своей жизни. Поэтому не удивительно, что органы юстиции, следователи («детективы») и прокуроры тщательно исследовали возможные причины катастрофы. Свой вклад внесла и наука. Далее мы подробно расскажем о ходе этого детективного исследования, расскажем и о юстиции, и о науке.

§ 3. Расследование, проведенное органами юстиции

Первым подозрением, возникшем у следователей и прокуроров, расследовавших катастрофу аквапарка «Трансвааль», было подозрение о террористическом акте, подозрение о том, что террористы заложили взрывчатку в злополучную колонну, одну из тех, на которых держалась крыша, и подорвали ее. Были проведены тщательные экспертизы, которые подозрений в терроризме не подтвердили.

Дело в том, что на месте взрыва всегда остаются следы частиц взрывчатки. Огромным давлением взрыва они накрепко «впечатываются» в мельчайшие поры бетона и их легко найти методами современного точного химического анализа. Точнейшие анализы подтвердили: никаких следов взрывчатки нет.

Несколько позже высказывалось другое подозрение: поскольку аквапарк «Трансвааль» находится на окраине Москвы и сразу за ним начинается лесопарк, то высказывалось подозрение: террористы из леса выстрелили по аквапарку, попали в колонну, поддерживавшую крышу, колонна сломалась и стала причиной аварии. Но сразу возникает вопрос — а чем стреляли террористы? Если разрывным снарядом (например гранатой из подствольного гранатомета), то обязательно на месте разрыва гранаты должны были остаться следы взрывчатки, а ни малейших следов взрывчатки, как уже говорилось, самые тщательные анализы не обнаружили. Если же террористы стреляли не разрывным снарядом («болванкой»), то болванка была бы обнаружена при разборе завала, а этого не было. Кроме того, для того, чтобы сломалась колонна, болванка должна быть выстрелена из довольно приличной пушки. Ну а предположить, что в московский лесопарк можно незаметно доставить пушку (и так же незаметно убрать) — это уж чересчур!

Вот поэтому все подозрения о террористическом акте были после тщательной проверки полностью отвергнуты.

Затем стали проверять качество строительства — не применялись ли некачественные или суррогатные строительные материалы, соответствовало ли реальное строительство проектным требованиям и т. п. Проверка показала, что нарушений не было.

§ 4. Исторический пример

Рассказ об одном из научных расследований известен мне в двойном пересказе. Поэтому некоторые мелкие детали могли ускользнуть из моей памяти, неточности возможны, но суть событий достаточно ясна.

Шел 1943 год. Заводы СССР выпускали уже много танков, когда вдруг, совершенно неожиданно, в решающие моменты боев, при резких маневрах, стали ломаться шестерни танковых коробок скоростей. Поломка шестерен сразу лишала танк движения, и он становился неподвижной мишенью для вражеской артиллерии.

Дело было очень опасным и очень важным для фронта. Поэтому на завод, изготавливающий шестерни, была направлена проверочная комиссия с большими полномочиями. Председателем комиссии был один из самых видных партийных деятелей того времени, член Политбюро ЦК ВКП(б), а одним из членов комиссии был рассказчик, тогда еще сравнительно молодой, но уже опытный инженер. Он начал внимательно изучать производство шестерен на заводе и особенно — организацию контроля за их качеством. Интуитивно он чувствовал, что причина поломок коробок скоростей есть, но найти ее сразу не удавалось. Но уже на четвертый день его вызвал к себе председатель комиссии и спросил: сколько вредителей Вы разоблачили, арестовали и отдали под суд? Далее произошел примерно следующий диалог.

Инженер: я пока не арестовал ни одного. По моему, дело не во вредителях. Ведь на заводе, и в отделе технического контроля работают те же люди, что и раньше. Новых не пришло, я проверял. Так что же — в тяжелейшие 1941 и 1942 годы они работали честно, а в 1943 стали вредителями? Не верится. Надо искать технические причины.

Партийный деятель: ищите скорей. Времени мало. Если не найдете причину — арестовывайте людей. Я уже арестовал и отдал под суд трех человек. Если мы вернемся в Москву не найдя причин поломок и не арестовав вредителей, то даже мне — члену Политбюро — будет не сладко, а вас — инженера — вообще могут арестовать и расстрелять за мягкотелость.

§ 5. Научное расследование причин катастроф. Открытие «особых» объектов и систем

Научным открытием, позволившим найти причины многих техногенных катастроф (в том числе, возможно, и катастрофы аквапарка «Трансвааль»), стало открытие «особых» объектов и «особых» математических моделей, которые эти объекты описывают. «Особые» объекты — это те, для которых обычные и, вроде бы, многократно проверенные методы проектирования и расчета не дают правильного результата. «Особые» объекты ведут себя совсем не так, как предусмотрено самым добросовестным проектом и расчетом и могут, например, неожиданно обрушиться на головы беззаботных посетителей.

Именно «особым» объектом оказался аквапарк «Трансвааль» (точнее — здание аквапарка). Именно встреча с «особым» техническим объектом стала, возможно, несчастьем для жертв аварии. Она же стала бедой для Н. Канчели и А. Воронина.

«Особые» объекты и «особые» математические модели были открыты и исследованы в Санкт-Петербургском государственном университете (СПбГУ) в 1987—2000 годах. Там же (и в те же годы) были открыты неожиданные свойства эквивалентных преобразований. Эти открытия (и их следствия) один из исследователей назвал «одним из важнейших открытий конца двадцатого века, возможно, даже самым важным»!

Важность открытий, сделанных в СПбГУ, заключается в том, что эквивалентные преобразования (их называют еще равносильными преобразованиями) применяются практически во всех инженерных и экономических расчетах, изучаются в средней школе.

Даже сегодняшние «гуманитарии», наверное, помнят, как в средней школе им рассказывали о простейших эквивалентных (равносильных) преобразованиях: