Динамика звёздных систем

Сурдин Владимир Георгиевич

Великие астрономические открытия Николая Коперника, Тихо Браге, Иоганна Кеплера, Галилео Галилея положили начало новой научной эре, стимулируя развитие точных наук. Астрономии выпала большая честь заложить основания естествознания: в частности, создание модели планетной системы привело к появлению математического анализа.

Из этой брошюры читатель узнает о многих фантастических достижениях астрономии, сделанных в последние десятилетия.

Текст брошюры представляет собой дополненную автором обработку записи лекции, прочитанной им для школьников 9-11 классов 11 ноября 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей: школьников старших классов, студентов младших курсов, учителей...

Библиотека

Закон гравитации Ньютона

Великие теоремы притяжения

Итак, в мире звёзд царствует гравитация. Остальные три физических взаимодействия — электромагнитное, слабое и сильное ядерные — практически никакой роли в движении звёзд и в эволюции звёздных систем не играют. Сила гравитации описывается чрезвычайно простым, особенно с точки зрения искушённых в математике школьников, законом. Исаак Ньютон опубликовал его в 1687 году в своей замечательной книге «Начала натуральной философии». Этот закон описывает взаимодействие двух материальных точек, т. е. таких тел, размер которых мал по сравнению с разделяющим их расстоянием. Но он применим к любым телам, поскольку каждое из них можно представить в виде совокупности материальных точек. Закон Ньютона гласит, что две материальные точки, обладающие массами М, и М2, притягиваются друг к другу с одинаковой силой, равной произведению их масс, делённому на квадрат расстояния между ними и, разумеется, умноженному на некоторую константу (обычно в курсах физики её обозначают буквой G, от лат. gravitas — тяжесть), значение которой зависит от единиц измерения массы, силы и расстояния:

В системе СИ ([М] = кг, [R] = м, [F] = Н) значение

но астрономы (и физики-теоретики, когда они работают в этой области) пользуются более удобными для проведения вычислений системами единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.

Движение двух точек под действием ВЗАИМНОГО ГРАВИТАЦИОННОГО ПРИТЯЖЕНИЯ

Ньютон решил задачу о том, как движутся две материальные точки, взаимно притягивающие друг друга, например, планета и её спутник. Вы, конечно, знаете решение этой задачи: под действием взаимного притяжения каждое из тел обращается по эллиптической орбите вокруг общего центра масс, лежащего в фокусах эллипсов. Орбиты тел подобны, но имеют разный размер, обратно пропорциональный массам тел. Если из инерциальной системы отсчёта, связанной с центром масс, перейти в неинерциальную, связанную с одним из тел, то второе обращается вокруг него также по эллиптической орбите (найдите сами её размеры).

Решение Ньютона, полученное в конце XVII века, подтвердило на основании новой по тем временам физики эмпирические открытия, сделанные Кеплером ещё в начале того же века: по результатам многолетних наблюдений, в основном проделанных датским астрономом Тихо Браге, Кеплер обнаружил, что планеты обращаются вокруг

Солнца по эллипсам с переменной скоростью, двигаясь так, что радиус-вектор (прямая, соединяющая планету и Солнце) за равные отрезки времени заметает равные площади, и что квадраты периодов обращения двух планет относятся как кубы больших полуосей их эллиптических орбит [4, 5]. Ньютон, используя сформулированные им законы механики и предположение о гравитационной силе, обратной квадрату расстояния, не только объяснил найденные Кеплером закономерности движения планет, но и доказал, что эллипс — лишь частный случай любого конического сечения (им может быть также парабола, гипербола, окружность или прямая), по которому происходит движение двух гравитационно взаимодействующих тел (рис. 1). Разумеется, если речь идёт о длительном движении связанных, т. е. не улетающих далеко друг от друга тел, то это эллипс или его частный случай — окружность (а почему не отрезок прямой?).

Рис. 1. Сечения конуса плоскостью представляют все возможные траектории движения в задаче двух тел: 1) окружность, 2) эллипс, 3) парабола, 4) гипербола; прямая получается в сечении конуса плоскостью, проходящей через вершину конуса.