Эпигенетика

Эллис Чарльз Дэвид

Дженювейн Томас

Рейнберг Дэнни

Издание осуществлено при финансовой поддержке Российского Фонда Фундаментальных Исследований по проекту № 09-08-07118.

Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.

Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.

По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.

Предисловие к русскому изданию

Глубокоуважаемый читатель!

Перед Вами русскоязычное издание первой в мире обстоятельной научной книги об эпигенетике. Под эпигенетикой обычно понимают область знаний о совокупности свойств организма, которые не прямо, а опосредованно закодированы в геноме и, по определению, должны передаваться по наследству. По сути дела в первую очередь эта наука имеет дело с механизмами, контролирующими экспрессию генов и клеточную дифференцировку. У организмов существуют мощные регуляторные элементы (в самом геноме и даже целые системы в клетках), которые контролируют работу генов, в том числе и в зависимости от разных внутренних и внешних сигналов биологической и абиотической природы. Эти сигналы накладываются на генетику и часто по-своему решают коренной вопрос — быть или не быть? Действительно, даже самая отличная генетика может вовсе и не реализоваться, если эпигенетика неблагополучна. По образному выражению Нобелевского лауреата П. Медавара «генетика полагает, а эпигенетика располагает».

Долгое время эпигенетику многие не признавали совсем, а часто стыдливо или даже намеренно умалчивали о ней. В основном, это происходило потому, что знания о природе эпигенетических сигналов и путях их реализации в организме были очень расплывчатыми. Сегодня стало ясно, что одним из таких эпигенетических сигналов в клетке является энзиматическая модификация (метилирование) самой генетической матрицы, то есть метилирование ДНК. С раскрытием и описанием исключительной роли метилирования ДНК в жизни организмов, по сути дела, впервые по-настоящему произошли становление и материализация эпигенетики как науки. Именно в России были открыты тканевая и возрастная специфичность метилирования ДНК у эукариотических организмов, в том числе у животных и высших растений, и было впервые обоснованно заявлено, что эта энзиматическая модификация генома может быть одним из механизмов регуляции экспрессии генов и клеточной дифференцировки. Здесь же были получены первые данные о том, что метилирование ДНК контролируется гормонально, а искажение метилирования ДНК — путь к раку.

Набор и природа эпигенетических сигналов в клетке весьма разнообразны, таких сигналов много и сегодня они разделяются, по крайней мере, на несколько групп — метилирование и деметилирование ДНК, «гистоновый код» (энзиматическая модификация гистонов — ацетилирование, метилирование, убиквитинирование, фосфорилирование и другие), транскрипционное и трансляционное замалчивание генов малыми РНК, позиционирование элементов хроматина. Любопытно, что многие из этих процессов переплетены между собой и взаимозависимы. Это во многом обеспечивает и гарантирует надежность эпигенетического контроля за избирательным функционированием генов. Детальное описание разных эпигенетических сигналов и механизмов их реализации можно найти в соответствующих главах этой любопытной книги. В ней детально описаны собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке Особое место занимают главы, описывающие роль малых РНК в замалчивании генов, ремоделирование хроматина, его разные энзиматические модификации, транскрипционное замалчивание генов белками групп поликомб и триторакс, инактивацию X хромосом и половую дифференцировку у нематод и млекопитающих, механизмы дозовой компенсации генов у дрозофилы и млекопитающих, метилирование ДНК и механизмы геномного импринтинга у млекопитающих, эпигенетические механизмы дифференцировки стволовых клеток, эпигенетический контроль за лимфопоэзом, пересадку ядер и репрограммирование ядра, эпигенетику рака, эпигенетические болезни человека. По отдельности в соответствующих главах довольно детально рассматривается так называемая частная эпигенетика разных групп организмов: дрожжей и других грибов, насекомых (дрозофила), реснитчатых простейших (Ciliata), высших растений.

Каждая из глав этой книги написана крупными, ведущими в мире специалистами в эпигенетике, которые, как правило, являются и основоположниками ее отдельных областей К сожалению, работы наших соотечественников, внесших достойный вклад в становление и развитие эпигенетики, остались практически без внимания. Жаль также, что в этой книге не приняли участие и такие всемирно известные родоначальники эпигенетики, как Робин Холлидей, Артур Риггс, Вальтер Дерфлер и другие. Эта многообещающая область знаний развивается очень быстро и бурно, и уже сегодня эта книга могла бы быть изрядно дополнена принципиально новыми и важными научными сведениями.

Глава I. Эпигенетика: от явления к области науки

Daniel Е. Gottschling

Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

1. Введение

Состоявшийся летом 2004 года 69-й симпозиум (Cold Spring Harbor Symposium on Quantitative Biology) был посвящен теме «Эпигенетика» и многие авторы этой книги были в числе его участников. Как наблюдатель на этом симпозиуме я знал, что это должна была быть интересная встреча. Совещание началось достаточно просто — с попыток определения эпигенетики. После недельных распросов участников на эту тему стало ясно, что задавать такой вопрос — все равно что просить кого-то определить, что такое «семейные ценности»: каждый знает, что это такое, но для каждого это имеет разный смысл. Как объяснил Дэвид Хейг [David Haig], отчасти причину такого широкого спектра мнений можно понять исходя из этимологии слова «эпигенетика»: это слово имеет двойное происхождение в биологической литературе прошлого века, и значение этого термина продолжает эволюционировать. Уоддингтон [Waddington] первым изобрел этот термин для обозначения исследований «каузальных механизмов», посредством которых «гены генотипа осуществляют фенотипические эффекты» (см. Haig, 2004). Позже Нэнни [Nanney] использовал этот термин для объяснения своих представлений о том, как клетки с одним и тем же генотипом могут иметь разные фенотипы, сохраняющиеся на протяжении многих поколений.

Я определяю эпигенетическое явление как изменение в фенотипе, которое является наследуемым, но не связано с мутацией в ДНК. Более того, это изменение в фенотипе должно быть похожим на переключение типа «ВКЛЮЧЕНО» или «ВЫКЛЮЧЕНО», а не градуальной реакцией, и оно должно наследоваться даже если первоначальные условия, вызвавшие это переключение, исчезают. Таким образом, в число эпигенетических явлений я включаю переключение между лизисом и лизогенией у бактериофага лямбда (Ptashne. 2004), переключение пилей у уропатогенной

Escherichia coli

(Hemday et al., 2003), эффект положения нестабильного типа у

Drosophila

(Henikoff, 1990), наследуемые изменения в кортикальном паттерне у

Tetrahymena

(Frankel 1990), прионные болезни (Wickner et al., 2004) и инактивацию Х-хромосомы (Lyon, 1993).

69-й симпозиум состоялся в 100-ю годовщину генетики как области исследований в Лаборатории Колд Спринг Харбор, что делает очень своевременным рассмотрение эпигенетики. Учитывая этот исторический контекст, я счел уместным рассмотреть изучение эпигенетики в свете предыдущих симпозиумов Колд Спринг Харбор Хотя 69-й симпозиум был первым, посвященными специально этой теме, эпигенетические явления и их изучение оказались представленными на протяжении всей истории этой выдающейся серии симпозиумов. Предлагаемая мною история сужается далее моими собственными ограничениями и предпочтениями. Для более полной и академической картины я могу порекомендовать свыше 1000 обзоров по эпигенетике, написанных за последние пять лет.

Представляя этот хронологический отчет, я надеюсь передать свое ощущение от того, как коллекция внешне несопоставимых явлений слилась воедино в область исследований, затрагивающую все разделы биологии, а также показать, что изучение эпигенетики основывается на стремлении объяснить неожиданное — возможно, в большей степени, чем любая другая область биологических исследований.

2. История эпигенетики на симпозиумах Колд Спринг Харбор

В 1941 году, во время 9-го симпозиума, великий генетик-дрозофилист Герман Меллер (H.J. Muller) описал результаты дальнейшей разработки явления, первоначально названного им «eversporting displacement», — явления, когда крупные хромосомные перестройки приводили к мутантной мозаичной экспрессии генов вблизи точки разрыва (Muller, 1941). Ко времени симпозиума он называл это «мозаицизмом, обусловленным эффектом положения» («position effect variegation»). Было надежно установлено, что затрагиваемые гены были перенесены «в соседство с гетерохроматиновым районом», что перенесенные эухроматиновые участки «были частично, но в разной степени, трансформированы в состояние гетерохроматина — ‘гетерохроматинизированы’» и что

добавление

экстракопий гетерохроматиновых хромосом «позволяло затронутому гену становиться более нормальным в своем функционировании». В то время это последнее наблюдение вызывало недоумение и было неожиданным, хотя теперь мы знаем, что это результат титрования лимитирующих компонентов гетерохроматина.

На 16-м симпозиуме (1951) высший приоритет имело детальное понимание гена. Этим можно объяснить, почему в понимании мозаицизма, обусловленного эффектом положения (PEV), имел место незначительный прогресс, хотя и были открыты новые примеры этого явления. Однако первый докладчик отметил, что PEV станет захватывающей областью будущих исследований (Goldschmidt, 1951). Барбара МакКлинток отметила, что хромосомные эффекты положения являются основой различий в «мутабильных локусах» кукурузы, и высказала предположение, что наблюдавшаяся ею изменчивость мутабильности, возможно, коренится в тех же механизмах, что лежат в основе PEV у

Drosophila

(McClintock. 1951).

Ко времени 21-го симпозиума идеи МакКлинток о «контролирующих элементах» получили дальнейшее развитие (McClintock, 1956). Две из них имели особо близкое отношение к эпигенетике. В системе контролирующего элемента

Spm

она обнаружила варианты, позволившие ей различать

trans

-действующие факторы, которые могут «подавлять» ген (уменьшать или устранять его фенотипическое выражение), а не заставлять его мутировать. Она также отметила, что некоторые контролирующие элементы могли подавлять действие гена не только в том локусе, куда они вставлены, но и в локусах, которые расположены на некотором расстоянии с той или другой стороны от него. Другие исследователи также обнаруживали этот «эффект распространения». Шульц представил биохимические и физические характеристики целых

Два сообщения на 23-м симпозиуме явились вехами в свете нашего сегодняшнего симпозиума. Во-первых, Бринк описал свои ошеломляющие наблюдения «парамутаций» в локусе R у кукурузы. Если две аллели (

На 29-м симпозиуме значительный интерес вызвала гипотеза инактивации Х-хромосомы у самок млекопитающих, незадолго до этого предложенная Мэри Лайон (Lyon, 1961). Еартлер, Бойтлер и Нанс представили новые данные в ее поддержку (Beutler, 1964; Gartler and Linder, 1964; Nance, 1964). Бойтлер дал обзор многочисленных примеров мозаичной экспрессии сцепленных с X генов у женщин, которые свидетельствовали в пользу случайной природы Х-инактивации. Основываясь на тщательном количественном анализе продукта гена, сцепленного с X, Нанс заключил, что инактивация Х-хромосомы происходит до наступления 32-клеточной стадии эмбриона.

3. 69-й симпозиум

С годами выявилось несколько универсальных принципов, общих для всех эпигенетических явлений, и эти принципы определяют экспериментальные подходы в наших попытках понять детали. Во-первых, различия между двумя фенотипическими состояниями («ВКЛЮЧЕНО» и «ВЫКЛЮЧЕНО») всегда коррелируют с соответствующим различием структуры в ключевой регуляторной точке — форма транслируется в функцию. Отсюда, основная задача заключается в идентификации этих двух различных структур, компонентов, из которых эти структуры состоят, и композиционных различий между ними Во-вторых, эти различающиеся структуры должны обладать способностью поддерживать и воспроизводить себя в окружении конкурирующих факторов и сил энтропии. Таким образом, каждая структура нуждается в самоусилении, или в контурах положительной обратной связи, обеспечивающих ее поддержание и воспроизведение на протяжении многих клеточных делений; в некоторых случаях, таких как инактивация Х-хромосомы, это время оказывается сравнимым со временем жизни

На 69-м симпозиуме продолжалось уточнение многих механистических принципов, установленных на предыдущих симпозиумах, но были и новые разработки. Чтобы поместить эти новые разработки в наш контекст, важно отметить, что важное влияние на эпигенетику оказали еще два открытия. Одним было открытие РНК-интерференции и родственных, базирующихся на РНК, механизмах регуляции. Другим было открытие механизмов, лежащих в основе гипотезы прионов. За последнее десятилетие обе эти области быстро развивались, и некоторые из этих исследований внесли вклад в наши знания об эпигенетике, базирующейся на хроматине, тогда как другие наметили новые перспективы в проблеме наследственной передачи фенотипов.

Многие достижения, представленные на этом симпозиуме, детально описываются в разных главах этой книги, поэтому я воздержусь здесь от обсуждения этих тем Однако я затрону несколько успешных и перспективных исследований, которые привлекли мое воображение и которые не освещаются на этих страницах В конце я попытаюсь сформулировать наиболее важные концепции, вынесенные мною из этого симпозиума.

3.1. Гипотеза гистонового кода

В ходе рассмотрения модификаций гистонов и их потенциального информационного содержания состоялось много дискуссий относительно «гипотезы гистонового кода» (Jenuwein and Allis 2001). Большинство этих споров, в которых я принимал участие или о которых мне рассказывали, были неформальными и довольно оживленными. Сторонники «кода» приводили такие примеры, как триметилирование гистона H3 по К9 и его повышенное сродство к классу НР1 белков гетерохроматина (Jenuwein and Allis, 2001). Их противники приводили биохимические и генетические данные о том, что на связывание с ДНК или на фенотип существенно влияет суммарный заряд на аминотерминальном «хвосте» гистона Н4, независимо от того, где этот заряд расположен (Megee et al., 1995; Zheng and Hayes, 2003)

Грюнштейн (Grunstein) представил данные, включавшие анализ модификаций (ацетилирования) гистонов и связанных с хроматином белков во всем геноме

S. cerevisiae

с использованием специфических антител и метода ChlP-Chip (Millar et al., 2004). Он сделал акцент на ассоциированном с ацетилированием H4K16 эпигенетическом переключении к связыванию или несвязыванию определенных белков хроматина, поддерживая таким образом гипотезу гистонового кода. Некоторые из его данных, хотя они и не обсуждались, по-видимому, свидетельствуют в пользу сообщений других исследователей о том, что для большой части генома нет корреляции между специфичесикми модификациями гистонов и экспрессией генов (т. е. все активные гены имеют одинаковые метки, и эти метки отсутствуют на неактивных генах) (Schubert et al., 2004; Dion et al., 2005). Учитывая всю совокупность этих результатов, я подозреваю, что в качестве механизмов регулирования структуры хроматина и экспрессии генов обычно используются и специфические модификации, и влияние общего заряда

3.2. Динамический «молчащий» хроматин

Я должен признаться, что, основываясь на статических изображениях гетерохроматина и на рефрактерной природе «молчащего» хроматина, я был убежден, что, однажды установившись, гетерохроматиновое состояние остается прочным, как гранит. Только когда наступает время репликации ДНК, эта непробиваемая структура становится релаксированной. Думая таким образом, я неразумно игнорировал принципы равновесной динамики, с которыми познакомился в курсе химии. Однако к этим урокам заставили возвратиться исследования «молчащего» хроматина и гетерохроматина, где было показано, что белки сайленсинга у дрожжей (Sir3) и белки гетерохроматина в клетках млекопитающих (НР1) находятся в состоянии динамического равновесия — эти белки быстро обмениваются между гетерохроматином и растворимым компартментом — даже когда хроматин находится в своем наиболее непроницаемом состоянии (Cheng and Gartenberg, 2000; Cheutin et al., 2003). Осознание динамических качеств хроматина вынудило меня иначе взглянуть на то, каким образом поддерживается и воспроизводится его эпигенетическое состояние. Этот взгляд предполагает, что в некоторых системах эпигенетическое состояние может быть ревертировано в любое время, а не только в ходе репликации ДНК. Отсюда мы можем заключить, что для «молчащего» хроматина механизмы усиления и воспроизведения должны функционировать постоянно.

Широко распространено мнение, что метилирование гистонов является модификацией, накладывающей на хроматин «перманентную» метку (обзор см. Kubicek and Jenuwein, 2004). В противоположность всем другим модификациям гистонов (например, фосфорилированию, ацетилированию, убиквитинированию) нет известных ферментов, которые могли бы обратимо удалять метальную группу с аминогруппы лизина или аргинина. Более того, считается, что удаление метальной группы простым гидролизом в физиологических условиях невыгодно и, таким образом, вряд ли происходит спонтанно.

Несколько сообщений слегка поколебали систему верований тех, кто думал, что метки метилирования являются перманентными. Во-первых, было показано, что ядерная пептидиларгининдеиминаза (PAD4) может удалять монометилирование с остатков аргинина (R) гистона H3 (Cuthbert et al., 2004; Wang et al., 2004). Хотя результатом этого процесса удаления метального компонента является конвертация остатка аргинина в цитруллин, и, следовательно, это не является истинной реверсией данной модификации, он, тем не менее, представляет собой механизм элиминации перманентной метильной метки.

Робин Олшайр (Robin Allshire) привел провоцирующий генетический аргумент, согласно которому ген

Однако Стив Хеникоф (Steve Henikoff) описал способ, которым могла бы элиминироваться перманентная триметиллизиновая метка Он показал, что вариантный гистон H3.3 может замещать канонический гистон H3 независимым от репликации и сопряженным с транскрипцией образом (Henikoff et al., 2004). По существу гистон, содержащий метильные метки для сайленсинга, мог бы быть удален и заменен гистоном, более подходящим для транскрипции. Когда был изолирован суммарный хроматин, оказалось, что гистон H3.3 имел на себе намного больше меток метилирования хроматина (например, K79me), чем канонический гистон H3.

3.3. Ядерная организация

Корреляции между ядерной локализацией и экспрессией генов были установлены уже много лет назад (Mirkovitch et al., 1987). На основе этих наблюдений начало формироваться мнение, что в клетке имеются специальные компартменты, которыми ограничены экспрессия генов или сайленсинг. Приводили доводы в пользу того, что такая организация необходима для поддержания сложности генома и его регуляции в работоспособном состоянии. Эта идея была поддержана исследованиями на

S. cerevisiae

, где теломеры преимущественно локализовались на периферии ядра, как и ключевые компоненты комплекса сайленсинга, такие как Sir4 (Palladino et al., 1993). Результатом мутаций, высвобождающих теломеры или Sir4 с ядерной периферии, является утрата теломерного сайленсинга (Laroche et al., 1998; Andrulis et al., 2002). Более того, искусственная привязка частично сайленсированного гена к этой периферии делала его полностью сайленсированным (Andrulis et al.. 1998).

В очень информативном эксперименте Гассер показал, что если теломеры и сайленсирующий комплекс высвобождаются с периферии и могут свободно перемещаться по всему ядру, легко устанавливается теломерный сайленсинг (Gasser et al., 2004). Таким образом, по-видимому, нет особой нужды локализовать локусы в компартменте. Это в большей мере согласуется с данными о том, что быстрое перемещение белков хроматина на хромосомы и с хромосом может, кроме того, опосредовать такую эффективную регуляцию, как сайленсинг. Возможно, чтобы поддерживать высокие локальные концентрации связанных с этим факторов в специальных (стрессовых?) условиях, какая-то локализация и необходима. Или же это может быть комбинацией доменов, собранных вместе в ходе эволюции, которая давно работает без всякой конечной цели.

3.4. Прионы

Викнер дал обзор прионов и критерии для их определения, и из его описания становится ясным, что они (прионы) — это часть эпигенетического ландшафта (Wickner et al., 2004a,b). В простейшем молекулярном смысле прионы — это белки, которые могут вызывать наследуемые фенотипические изменения, действуя на родственный этим белкам генный продукт и изменяя его. Никаких изменений нуклеотидной последовательности ДНК не происходит; скорее, прион, в общем случае, навязывает своему субстрату некое структурное изменение. Прионы, относящиеся к лучше всего изученному и понятому классу, заставляют растворимые формы белка преобразовываться в амилоидные волокна. Во многих случаях эта амилоидная форма снижает или вовсе устраняет нормальную активность данного белка, вызывая таким образом изменение в фенотипе. Викнер определил еще один класс прионов, которые не формируют амилоидных нитей. Это ферменты, для активации которых требуется своя же ферментативная активность. Если клетка обладает лишь неактивными формами этого энзима, тогда необходим внешний источник активного энзима, чтобы положить начало тому, что затем станет самовоспроизводящимся признаком, пока по крайней мере одна активная молекула передается каждой клетке. Он привел два примера и выразил уверенность в том, что этот класс белков составит новую группу эпигенетических механизмов для исследования.

Ши представил предварительные данные о том, прионная модель может объяснить научение и память у

Aplysia

(Si et al., 2004). В нейрональных клетках этого моллюска трансляция ряда запасенных и PH К в белки важна для поддержания кратковременной памяти. Он обнаружил, что регулятор белковой трансляции, СРЕВ, может существовать в двух формах и что активированная форма СРЕВ действует доминантно, воспроизводя себя. Проверка этой идеи все еще находится в самом начале, но обещает фантастические новые подходы на тему о том, каким образом мы помним.

4. Заключительные соображения

Итак, что еще нужно сделать, чтобы понять эпигенетические механизмы? По большей части мы все еще собираем (открываем) их отдельные компоненты. Точно так же, как полная последовательность генома чрезвычайно облегчила прогресс в области генетики, так и более ясное понимание эпигенетики придет, вероятно, тогда, когда станут известными все составные части. Успехи, достигнутые за последнее десятилетие, очень вдохновляют.

Признаюсь, я не в состоянии различить, близки ли мы или далеки от точного, в механистическом плане, понимания того, каким образом поддерживаются и воспроизводятся эпигенетические состояния. Первым, возможно, придет понимание феноменов, базирующихся на прионах; те же явления, которые базируются на хроматине, по-видимому, наиболее далеки от этого. Поливалентная природа взаимодействий, которые, по-видимому, необходимы для установления сайленсированного состояния на хромосоме, увеличивает сложность проблемы. Последняя еще более усложняется динамической природой «молчащего» хроматина. Возможность узнать больше о движении компонентов в хроматиновые структуры и из них требует для окончательного понимания применения усовершенствованных или совсем новых методов. Иммунопреципитация хроматина, оказавшаяся важной в установлении того, какие компоненты находятся в составе структуры, временно заслонила от нас динамику.

Я подозреваю, что, учитывая эту сложность, простое измерение констант связывания и равновесия для всех компонентов и попытки получить систему дифференциальных уравнений для имитации эпигенетических переключателей могут оказаться неэффективной тратой ресурсов и не обязательно приведут к лучшему пониманию. Скорее, я предполагаю, что потребуется разработка математического подхода нового типа в комбинации с новыми экспериментальными методами измерения для окончательного понимания эпигенетических событий. В частности может потребоваться разработка систем in vitro, надежно воспроизводящих эпигенетическое переключение между состояниями.

Идея конкуренции между двумя состояниями в большинстве эпигенетических явлений, вероятно, отражает «гонку вооружений», происходящую на многих уровнях клетки, за которой следуют попытки исправить «сопутствующий ущерб». Например, белки сайленсинга возникли, возможно, для зашиты генома от транепозонов Однако, поскольку белки сайленсинга работают через посредство вездесущих нуклеосом, становятся репрессированными некоторые критичные гены. Чтобы преодолеть это, возникли модификации гистонов (например, метилирование H3K4 и H3K79) и замещение вариантными гистонами, чтобы предотвращать связывание белков сайленсинга с критичными генами. В зависимости от последующих событий эти изменения могут быть кооптированы для других процессов — например, может стать полезной репрессия некоторых генов белками сайленсинга («молчащие» локусы типа спаривания). Механизмы сайленсинга могут кооптироваться и для других функций, таких как стимуляция расхождения хромосом. И так далее…

Я жду секвенирования геномов новых организмов, поскольку это может привести нас к пониманию последовательности эволюционных событий, приведших к возникновению эпигенетических процессов, которые мы наблюдаем сегодня. Например, у